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Figure 1. Animating the Uncaptured, a novel approach for animating 3D humanoid meshes from text prompts. Given an input mesh and a
text prompt describing a motion, we use a video diffusion model to generate a video of the mesh performing the motion. We then transfer the

motion to the mesh by sparse and dense tracking of the video.

Abstract

Animation of humanoid characters is essential in various
graphics applications, but requires significant time and cost
to create realistic animations. We propose an approach to
synthesize 4D animated sequences of input static 3D hu-
manoid meshes, leveraging strong generalized motion priors
from generative video models — as such video models contain
powerful motion information covering a wide variety of hu-
man motions. From an input static 3D humanoid mesh and a
text prompt describing the desired animation, we synthesize
a corresponding video conditioned on a rendered image of
the 3D mesh. We then employ an underlying SMPL represen-
tation to animate the corresponding 3D mesh according to
the video-generated motion, based on our motion optimiza-
tion. This enables a cost-effective and accessible solution to
enable the synthesis of diverse and realistic 4D animations.
Project Website: https://march.pro/atu

1. Introduction

Character animation is fundamental in computer graphics —
enabling lifelike, expressive, and engaging virtual characters
for applications such as movies, video games, mixed reality,
robotics, and many more. Such characters portrayed with
realistic motions help to drive storytelling and interactivity,
making crafted content more engaging and immersive.

Traditionally, character animation requires significant
manual labor from highly-trained artists, who manually craft
character rigs, define keyframes for motions, and fine-tune
detailed motion behavior. This is both costly and requires a
significant amount of tedious effort from skilled artists. Thus,
leveraging learned motion priors to inform character anima-
tion would enable much more efficient animation synthesis.
However, ground-truth capture of human motion is very
difficult and expensive to acquire, resulting in very limited
data available [24, 29, 57] for training such motion priors,
strongly limiting the diversity and generalization capability
of methods fully supervised with such 4D data [41, 46].


https://marcb.pro/atu

Recently, video diffusion models [1, 14, 53], trained on
large-scale datasets with abundant video data, have demon-
strated the ability to generate diverse and realistic videos
conditioned on textual prompts. This suggests that these
models implicitly learn motion priors that capture how the
world evolves over time. Building on this insight, we pro-
pose a general approach for animating a 3D humanoid mesh
based on a text description of the intended motion. Instead
of relying on small and constrained 4D human motion cap-
ture datasets, we leverage motion priors learned by video
generative models, which possess strong representational
capacity and can synthesize diverse, high-fidelity human
motion sequences.

Given a text prompt describing the intended motion, we
generate a synthetic video of a 3D humanoid mesh perform-
ing the specified motion using a text-to-video (T2V) diffu-
sion model. This model is conditioned on both the rendering
of the 3D mesh and the text prompt. To facilitate motion
tracking, we employ the SMPL body model [25] as a de-
formation proxy for the input mesh, enabling us to estimate
the SMPL parameters and track the 3D mesh throughout the
generated video frames.

Our approach begins by registering the SMPL body model
to the input mesh, leveraging estimated body joint loca-
tions from multiple views. We then reparameterize the input
mesh’s vertex coordinates into barycentric coordinates rela-
tive to the SMPL mesh faces. To transfer motion from the
generated video to the input mesh, we extract 2D body land-
marks, silhouettes, and dense DINOv2 [31] features from
the video frames, which serve as tracking cues for accurate
motion reconstruction. This provides an easy, accessible ap-
proach to generate a wide range of realistic 4D humanoid
animations.

Our contributions are summarized as follows:

* We tackle the task of mesh animation by leveraging the
strong generative capabilities of text-to-video (T2V) diffu-
sion models.

* We propose a pipeline to robustly track the motion from
the generated video by combining body landmarks, silhou-
ettes, and dense features.

2. Related Work

Text-to-Human Motion Generation Human motion gen-
eration is a pivotal area in computer graphics, focusing on
synthesizing realistic human movements for applications
such as animation and virtual reality.

Although human motion can be captured using motion
capture (MoCap) systems [15, 32, 49], this process requires
specialized setups and actors which is expensive and time-
consuming. This motivates the development of data-driven
methods that can generate human motions from different
input signals, such as actions [11], and audio [4, 5, 7]. en-
abling the creation of diverse and realistic human animations

without the need to manually capture every new motion.

In particular, text-to-human motion generation aims to
synthesize human motion sequences based on text prompts
describing the desired action in natural language. [56] pro-
posed the first text-conditioned diffusion model [13] for
human motion generation. Such text-to-motion methods typ-
ically require paired text and body pose parameters for train-
ing, which are often obtained from motion capture data.
However, such data is limited in quantity and diversity, and
may not generalize well to unseen actions [11, 12, 37].

Similar to our approach, MotionDreamer [47] proposes
to extract motions from video diffusion models to animate
meshes. As proposed by [27, 45, 55], they extract semantic
features from the intermediate activations of the diffusion
model and perform feature matching between frames. This
is an expensive process and limits their pipeline to use low
resolution features. In contrast, we employ both sparse and
dense features for mesh registration and tracking, and our
focus on humanoid meshes enables us to use stronger body
priors for regularization.

Human Pose and Shape Estimation from Images and
Videos Monocular HPS estimation remains particularly
challenging due to the inherent ambiguity in the 2D-to-3D
mapping and the absence of depth information. To solve
this, methods often rely on statistical body models [16, 25,
33, 35, 52] which provide a prior of shapes and poses and a
low-dimensional parameterization of human body.

Two main approaches have been widely adopted to
address this problem: optimization-based methods and
regression-based methods. Optimization-based methods it-
eratively refine 3D pose and shape parameters by min-
imizing reprojection error between the 3D model and
2D image observations, such as silhouettes or body key-
points [3, 18, 26, 36]. [2] proposes to predict 2D joints loca-
tion from an image and then optimize the SMPL body pram-
eters to minimize the reprojection error. To seek a stronger
body prior, [35] trains a variational autoencoder [19] to learn
the representation of human poses. Regression-based meth-
ods leverage deep learning to directly estimate 3D pose and
shape parameters from images or videos. Frameworks such
as HMR [17] and SPIN [21] employ neural networks to pre-
dict SMPL parameters by learning from paired image data
with pseudo-ground truth annotations. While these methods
achieve real-time inference and improved robustness com-
pared to optimization-based approaches, their performance
is limited by the quality and diversity of the training datasets.
As aresult, regression-based models often struggle to gen-
eralize to out-of-distribution data, such as synthetic videos
generated by text-to-video models.

Recent advancements have extended the image-based for-
mulation to video-based. Crucially, these methods leverage
temporal information to improve the consistency and realism
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Figure 2. Method Overview. Given a mesh in an arbitrary pose and a text prompt describing the desired motion, we generate a video
conditioned on the text prompt and the rendering of the mesh. We leverage the SMPL body model as a deformation proxy and to track the
motion from the video and transfer it to the input mesh. For this, we fit SMPL to the input mesh and associate the vertices of the input mesh
with the SMPL faces (Sec. 3.3.1). Finally, we optimize the SMPL paramters to match the motion in the video based on estimated body
landmarks, silhouette and DINOv?2 features from the frames (Sec. 3.3.2).

of the estimated human motions across frames [10, 42, 44].

Such human pose estimation from images and videos have
also been used to synthesize 3D and 4D human-object inter-
actions [22, 23]. In this work, we use an optimization-based
approach to focus on humanoid animation. Our approach
robustly handles the synthetic videos generated by a text-to-
video model to effectively generate diverse, realistic motion
for various humanoid meshes.

3. Method

Our method tackles the task of text-to-motion for humanoid
meshes. Given a text prompt (P) describing the desired
motion and a humanoid mesh (S) in an arbitrary pose, the
method generates the deformation parameters () to animate
the mesh over time. For this, we leverage the motion priors
of Video Diffusion Models (VDMs) by generating a video
conditioned on the prompt and the rendering of the mesh
(IRGE € RAXWx3) We use the SMPL body model [25]
as a deformation proxy to animate the input mesh through
its parameters (Sec. 3.3.1). We then optimize the deforma-
tion proxy parameters to match the motion in the generated
video (Sec. 3.3.2). The overview of our method is illustrated
in Fig. 2.

3.1. Preliminaries

SMPL The Skinned Multi-Person Linear (SMPL)
model [25] is a parametric body model that represents body
shape and pose variations using a learned low-dimensional
representation. It is defined by the shape parameters 5 € R0
and the pose parameters § € R23%3, where the shape
components correspond to the principal components of the
body shape and the pose parameters represent the rotations
of 23 skeletal joints in axis-angle representation.

In this work we use the SMPL model as a deformation
proxy to animate the input mesh. In particular, we use the en-
coding Z € R3? of the variational autoencoder VPoser [35]
as the pose representation for this work. Directly optimizing
the latent representation ensures that the pose parameters
lie within the manifold of valid human poses. To simplify
the notation, we use the symbol @ to refer both to the pose
parameters and the VPoser encoding.

3.2. Video Generation and Frame Features

We start by normalizing S to unit scale and centering it
around the origin. We define P : (S,C) — [ € REXWx3
as the rendering function of the mesh S from camera C' to
obtain the frame IRGB,



Video Generation We use a Video Diffusion Model
(VDM) to generate a video {I}F9B }tF:_Ol with F frames de-
picting the mesh performing the motion described by the
prompt. For this, we condition the VDM with the frame IXSB
and the prompt P. Note that the first frame of the generated
video is the same as the rendered image I8B.

Body Landmarks Estimation We use MediaPipe Pose
Landmarker [26] to estimate the body pose landmarks for
video. For each frame, MediaPipe provides 33 landmarks,
(js,wi), where j; are the normalized pixel coordinates and
w; are the confidence scores. We rearrange them to be in the
same order as the SMPL joints, and apply a smoothing filter
to mitigate the effect of noisy predictions.

Dense Features Due to the jittery and sparse nature of
landmark estimation, we additionally extract dense per-pixel
features from the frames using a pre-trained DINOv2 [31]
and obtain {I7}7!. Following Dutt et al. [6], we anno-
tate the vertices of the mesh V = {v;} with the features
Vo = {vf }, where v? is the feature vector of vertex v;. To
obtain the features, we render the mesh from 100 equally
spaced cameras along the surface of a sphere centered on
the mesh, extract the features of each view, and back-project
and accumulate them on the mesh vertices. Finally, due to
memory constraints, we perform PCA on the dense features
and keep the first 64 components.

Silhouette We extract the silhouette I!! of the mesh by
thresholding the white background.

3.3. Optimization

We reduce the task of transferring the motion from the
video to the mesh as a video tracking problem. First, we
register the SMPL [25] model to the input mesh and repa-
rameterize V’s coordinates with respect to the SMPL faces
FSMPL (Sec. 3.3.1). Finally, we optimize the parameter
© to deform the input mesh to match the motion in the
video( Sec. 3.3.2).

Model Parameters The deformation function D

(§,0;) — &; is a function that deforms the input mesh
S using the deformation parameters ©; for frame ¢. Note
that for D(S, ©g) = S due to the video generation process
being conditioned on IR°B. The parameters © are defined
as (s, 3,04, Ty, Ry, Ay), where s is the scale of the SMPL
model, ( is the shape parameters, and 60, T;, R, and A
are the pose, translation, rotation parameters and per-vertex
offsets for each frame ¢. Note that the shape and scale pa-
rameters are shared across all frames. For simplicity, we

use ©, to refer to the deformation parameters for frame ¢:
F—1
@ = {("‘)t t=0 *

To mitigate the influence of noisy signals during optimiza-
tion, such as the jitter in the estimated landmarks, we opt
to use shallow Multi-Layer Perceptrons (MLPs) to param-
eterize 0;, 1}, R;. That is, we use Ouvip, Tmip, and Ry p to
predict their corresponding SMPL parameters for each frame.
As input, they take the Sinusoidal Positional Encoding [48]
of the frame index. For simplicity, we use the same notation
to refer to the SMPL parameters produced by the MLPs. For
instance, 0; = O\p(PE(t)) represents the pose parameters
predicted by the MLP for time step ¢.

3.3.1. SMPL Registration

We choose to leverage the SMPL model [25] for the follow-
ing reasons: (1) due to monocular tracking being inherently
ambiguous, we benefit from the body prior in SMPL and
VPoser [35], which ensures that the optimization remains
within the plausible space of human poses; (2) the input
mesh doesn’t incorporate any deformation model such as
skeleton or blend shapes.

We optimize for s, 3, 8y, Ty, Ro; and minimize both
terms in Eq. (1) and Eq. (2). The first term ensures that the
SMPL joints J are close to the estimated 3D joint locations
J from the input mesh, while the second term minimizes
the distance between the SMPL vertices and their nearest
neighbors on the input mesh. To obtain J, we triangulate the
2D landmark predictions from MediaPipe [26] using views
sampled around the mesh.

1Y ) 2
EJZN;M Ji — J; , (D
1
Loy (V) = 3 [lv = NN, VM2 (2)
vey

We also include simple L priors for the shape and pose
parameters, as defined in Eq. (3) and Eq. (4), respectively.

Ls (8) =115l 3)

Lo (6:) = 10:]| )

SMPL as a Deformation Proxy Finally, we reparametrize
the input mesh vertices ) with respect to the closest faces
on the SMPL model 7SMPL We define the function U that
maps the input mesh vertices to their corresponding SMPL
faces:

oy — fSMPL 5)

We compute the barycentric coordinates of the corre-
sponding SMPL face to obtain the 3D location of the



input mesh vertices in the SMPL space. We define this
reparametrization as:

I(v) = Z ’y,;viSMPL +dn (6)

SMPL
vMPLew (v)

where ~; are the barycentric coordinates of the input
mesh vertices v with respect to the SMPL face fSMPL d is
the distance from the input mesh vertex to the SMPL face,
and n is the normal of the SMPL face.

This ensures that the input mesh vertices are attached
to the SMPL model, allowing us to optimize the SMPL
parameters to match the motion in the video. To address
potential outliers, we apply a robust filtering mechanism that
identifies and excludes mismatches. Outliers are detected by
combining multiple criteria: (1) absolute distance between
the input mesh vertices and the SMPL model; (2) the angular
deviation between vertex normals and face normals of the
closest SMPL triangle, ensuring alignment within a threshold
of 45 degrees; (3) neighborhood statistics, which analyze the
mean and standard deviation of distances between vertices to
identify points that deviate significantly from their neighbors.

where ~; are the barycentric coordinates of the input mesh
vertices v with respect to the SMPL face fSMPL,

3.3.2. Video Tracking and Motion Transfer

We transfer the motion from the generated video to the input
mesh by optimizing the following parameters of the deforma-
tion model ©;: T}, Ry, 6;, and Ay, keeping fixed the shape
and scale parameters /3 and s. We formalize the deformation
model as follows:

D(S,0¢) =T (R; - SMPL (B3,0;) +Ti) + Ay (7)

Loss terms We optimize the parameters described above
to minimize Eq. (8).

F—-1

1
F Z (‘Cj + ‘Csil + Ed;) + Lregs (8)

t=1

Etolal =

The first data term, £;, shown in Eq. (9), minimizes the
distance between the re-projected SMPL joints (7), and the
predicted 2D landmarks (7), where w is the confidence score
of the predicted landmarks, p is the German-McClure loss
function [8], and N is the number of landmarks.

1 .
L=~ > wip (3 i) ©
i=1

The second data term, L, shown in Eq. (10), minimizes
the binary cross-entropy loss between the rendered silhouette

I ;“) and the silhouette extracted from the generated video
(I*"), where N = HW is the number of pixels.

N
1 . ~, . A,
La ==~ (Bhlog(£) + (1 = ) log(1 — 1))
i=1

(10)

The final data term, L4, shown in Eq. (11), minimizes the

cosine similarity between the rendered features (/%) and the
dense features extracted from the generated video (I?).

N - @

1 [¢ti'It‘
Ly=— ] - —= 11
b N;=1< | ) (1D

1120ill201 17 12

The last term, L, includes all regularization
terms:  Liemp, Lex.ben, and Ly, which are defined
in Eq. (12), Eq. (13), and Eq. (4), respectively.

Temporal regularizers are used to ensure smooth motion
across frames and mitigate the impact of landmark jitter. In
particular, we penalize abrupt changes in translation, rotation,
pose parameters, and 3D joint locations between consecutive
frames. The temporal regularization terms are defined as
follows:

T
Liemp(x) =Y _ [l — 2421l (12)
t=1

Inspired by [2], we also include a term to penalize ex-
treme bending of the knees and elbows. See (13). This term
is defined as the sum of the squared angles between the up-
per and lower limbs, ensuring that implausible poses with
excessive bending are avoided.

Eex. ben. (9) = Z

1€ (elbows, knees)

exp {60;} (13)

Additionally, as described in Sec. 3.3.1, we penalize devi-
ations from the manifold of valid human poses by using the
VPoser regularization term defined in Eq. (4).

Finally, we employ As-Rigid-as-Possible [43] regulariza-
tion to ensure that the resulting mesh deformation is smooth
and preserves the mesh’s intrinsic structure.

Feature Mapper Due to the appearance of the mesh S
and the generated video {IFGB}L_Ol diverging over time,
we use optimize for a vector that learns to project the vertex
features V¢ to a space that is more similar to the features
extracted from the video I?. Its parameters are optimized in
a self-supervised manner.

4. Experiments

4.1. Implementation Details

In our implementation, we use PyTorch 2.0.1 [34] and CUDA
11.7 [30], and perform differentiable rendering with Py-
Torch3D 0.7.7 [40]. We use SMPL [25] and VPoser [35]
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Figure 3. Qualitative Results. Visualization of generated mesh animations with our method. Each row shows: the text prompt, the input
mesh, and intermediate frames of the generated motion. For all generations, we visualize the frames from the front and side views.

as body priors. For frame processing, we MediaPipe [26]
and DINOvV2 [31] to extract landmarks and dense features
respectively. Our neural parameterization consists of shal-
low multilayer perceptrons (MLPs) with four layers and 128
hidden units per layer. We use a 64-dimensional positional
encoding of the frame index as input. We used two different
video diffusion models: RunwayML [9] and Kling AI [38].
Both models generate 5-second videos at a resolution of
768 x 1280 pixels, which we downsample to 384 x 640
pixels during optimization due to memory constraints. For
SMPL registration, as described in Sec. 3.3.1, we set the
batch size to 8 and optimize for 1,000 iterations or until
convergence, using a learning rate of 0.01 with the Adam
optimizer [20]. Similarly, for video tracking, as described
in Sec. 3.3.2, we use the same batch size and optimize for
4000 iterations or until convergence, with a learning rate of
0.001.

4.2. Video Tracking

We evaluate the tracking performance of our method using
rendered videos of animated untextured meshes, as this en-
ables evaluation with ground truth while also mimicking the
output of a text-to-video model conditioned on untextured
meshes.

Datasets For evaluation, we use the CAPE dataset [28, 39],
which provides 4D sequences of clothed humans in motion.
Each sequence includes a 3D human body mesh with the
corresponding SMPL+D registration. We use these SMPL
parameters as ground truth for evaluation. We evaluate a

random set of 26 sequences from the CAPE dataset, totaling
7,000 frames, and render their untextured SMPL meshes.

Baselines We compare our method with a learning-based
method, WHAM [42], and an optimization-based method,
SMPLIFY-X [35]. Since SMPLIFY-X does not enforce tem-
poral regularizations, we apply a smoothing filter to its re-
sults to improve the performance on video sequences. Finally,
as our method uses the input mesh to get an initial alignment
for the first frame of the sequence, we align the results of
WHAM and SMPLIFY-X to the input mesh using Procrustes
alignment as well for fair comparison.

Evaluation Metrics We evaluate the methods using
three metrics: Mean-Per-Joint-Position-Error (MPJPE), Per-
Vertex-Error (PVE), and acceleration error, which quantifies
the inter-frame smoothness of the reconstruction. We follow
established evaluation from [35], and include acceleration
error as in [42] to measure the temporal consistency.

Results As shown in Tab. |, our method outperforms
SMPLIFY-X, SMPLIFY-X with smoothing, and WHAM
in all metrics. We note that WHAM, as a learning-based
method, is not trained for tracking untextured videos, which
causes its performance to degrade from its original setting.
Our approach is better suited for tracking videos generated
by a text-to-video model conditioned on untextured meshes.



Method MPJE PVE  Accel
SMPLIFY-X 0.054 0.057 20.57
SMPLIFY-X* 0.053 0.056 02.18
WHAM 0.051 0.054 08.61
Ours 0.036 0.041 01.49

Table 1. Pose fitting performance comparison with SMPLIFY-
X [35], it’s smoothed version SMPLIFY-X*, WHAM [42], and
our proposed method on untextured sequences from the CAPE
dataset. Metrics include Mean-Per-Joint-Position-Error (MPJPE),
Per-Vertex-Error (PVE), and acceleration error (Accel). Lower val-
ues indicate better performance across all metrics.
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Figure 4. User Study Results. We ask the questions: ”Which
video...?”. We compare our method against MDM [46]. We observe
a statistically significant preference for our method over MDM in
all questions. *** denotes significance at p < 0.001.

4.3. Motion from Generated Videos

Perceptual Study We evaluate the quality of the mo-
tions generated by our method by conducting a perceptual
study and comparing them with the motions generated by
MDM [46]. A total of 30 participants took part in the study
and were asked to answer the following questions:

¢ Q1: ”Which motion looks more realistic?”
* Q2: "Which motion aligns better with the text prompt?”
* Q3: ”Which motion do you prefer overall?”

For each test case, we generated the same motion using both
our method and MDM [46]. Participants were shown 17
such motion pairs, each presented from two different views:
front and side. To mitigate bias, the order of the motions was
randomized for each participant. Note that the questions aim
to not only evaluate prompt alignment but also the overall
quality of the generated motion.

In Fig. 4, we observe a statistically significant prefer-
ence, meaning (p < 0.001, binomial test), for our method
over MDM [46] in all questions.

Method MPJPE PVE  Accel
w/o Lo 0.0486  0.0556 1.7121
W/0 Lex ben. 0.0393  0.0453 1.5699
wlo Ly 0.0392  0.0447 1.5895
w/0 Liemp 0.0403  0.0458 3.2005
Opt. Parameters  0.0453  0.0533  2.6494
Ours 0.0362 0.0411 1.498

Table 2. Ablation study on the effect of various components on
performance. Metrics include MPJPE (Mean Per Joint Position
Error), PVE (Per Vertex Error), and Accel (Acceleration Error).
Lower is better for all metrics.

Qualitative Results In Fig. 5, we show a comparison of
the generated motion using our method and MDM [46] for
the same motion prompts. We observe that our method gen-
erates motions that align better with the text prompt and look
more realistic. Specifically, by leveraging the wide prior
of the VDM, we can generate more diverse and realistic
motions.

In Fig. 3, we show additional qualitative results of our
method. We generate motions given a text prompt and visu-
alize the frames from the front and side views.

4.4. Ablations

We conduct different ablation studies to evaluate the impact
of our various design choices. To evaluate a setting where
ground truth is available, we run the same evaluation as
for tracking (Sec. 4.2) and show ablation results in Tab. 2.
We observe that the temporal loss Liemp clearly improves
performance, particularly in acceleration error. Opt. Param-
eters refers to directly optimizing the SMPL parameters
instead of using an MLP to predict them. This confirms that
by using a neural parameterization, we can take advantage
of the inductive bias of the MLP to improve the tracking
performance, particularly, the smoothness. Lex pen. and Ly
allow us to leverage the body prior, which helps to maintain
anatomically plausible poses.

4.5. Limitations and Future Work

While video diffusion models have demonstrated significant
potential in generating diverse and realistic human motions,
they can generate artifacts such as morphing effects. How-
ever, with the rapid developemnt of VDMs, we anticipate that
future iterations of VDMs will address these shortcomings
and further enhance motion realism. Monocular tracking re-
mains an inherently underconstrained problem, often leading
to ambiguities and inaccuracies in the reconstructed motion.
To mitigate these challenges, future work could explore the
integration of depth predictors [18] or leverage multi-view
diffusion models [50, 51, 54]. Our proposed approach opens
up exciting possibilities for generating 4D datasets of human
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Figure 5. Qualitative Evaluation. We compare the motions generated by MDM [46] and our method for some of the prompts used in the
perceptual study. We show two views (front and side) of the generated motions for multiple frames.

motion. These datasets could serve as valuable resources
for training and benchmarking models in human motion
analysis. Moreover, our method has significant potential for
practical applications, such as creating animations for vir-
tual characters in video games, movies, and mixed-reality
experiences.

5. Conclusion

In this work, we propose Animating the Uncaptured, a novel
method for text-to-motion generation for humanoid meshes.
By leveraging the strong priors of video diffusion models,
our approach generates realistic and diverse human motions,

which are transferred to 3D meshes. We use the SMPL model
as a deformation proxy, anchoring the vertices of the input
mesh to their closest SMPL face and optimizing the SMPL
parameters to track the motion depicted in the generated
video. This process is guided by extracting 2D body land-
marks, silhouette information, and dense semantic features
from the video frames. Experiments on the CAPE dataset
demonstrate that our method quantitatively outperforms base-
line approaches, particularly in tracking videos with untex-
tured meshes. Finally, our user study highlights a strong
preference for the motions produced by our method, both in
terms of realism and alignment with text descriptions.
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