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Abstract

Relative camera pose estimation is a fundamental problem in Computer Vision. While it
has been widely studied over the decades by classical approaches and more recently
by learning-based methods, it still remains a challenging problem. Particularly, wide-
baseline camera transformation in indoor scenarios results in frames with small overlap
and few correspondences.

In this Master’s Thesis, we present LRCE, an end-to-end learnable differentiable ap-
proach for solving pairwise relative camera pose estimation for RGB-D frames. The
key idea is to learn confidence scores for the correspondences in a self-supervised
manner using an end-to-end loss based on the distance between the predicted and the
ground truth poses. Additionally, our end-to-end differentiable pipeline enables refining
correspondence prediction from the signal provided by the final alignment.

Finally, we evaluate our method on the ScanNet dataset by analyzing the performance
of correspondence matching and pose estimation. We demonstrate that our approach is
able to improve the pose alignment by weighting the correspondences with the predicted
scores. We also show that the signal from the pose alignment improves the performance
of the correspondence matching.
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1. Introduction

Camera pose estimation is a core problem in many computer vision applications such
as 3D reconstruction, Structure from Motion (SfM) or Simultaneous Localization and
Mapping (SLAM). At its core definition, the problem consists in finding the camera
location from a frame with respect to an arbitrary coordinate system such as another
camera from a different frame or a global coordinate system.

Figure 1.1.: Diagram of the camera pose estimation problem: The goal is finding the
transformation between the camera Ocamera coordinate system to another
one, in this example, the world coordinate system Oworld. The transformation
has two components: rotation R and translation t.

Because relative pose estimation is such a core problem in Computer Vision, it has
been studied for many decades. For calibrated cameras, there exist multiple classical
approaches which solve it by constructing the Essential matrix. The Essential matrix
relates correspondences between a pair of images through epipolar geometry. Likewise,
it’s possible to solve the problem for uncalibrated cameras using the Fundamental
matrix.

Traditionally, pose estimation is approached in multiple steps [1]: i) feature detection,
ii) feature description, iii) feature matching, and iv) pose optimization. The first step,
feature detection, consists in selecting points of interest from both images, such as
corners, and avoid selecting points on texture-less areas such as walls. Feature descrip-
tors are then computed for each point using information from its neighborhood. Then,
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1. Introduction

the points from the first image are matched with points from the second image using
their descriptors. A common approach for that is matching points which are nearest
neighbors in the descriptor space. Finally, the matches are used as constraints for the
optimization problem of finding a rigid transformation which minimizes the distance
between the matches. Additionally, it might be necessary to add a post-processing step
to remove outliers, that is, correspondences which are not correct.

In recent years, Deep Learning has been used to revisit many Computer Vision problems.
The rapid evolution of hardware allows solving problems with approaches which were
computationally unfeasible in the past. This is not only due to the increase in hardware’s
performance but also to the growth of available data. Moreover, every year sensors used
to generate datasets are more accurate which is a crucial requirement for Deep Learning
approaches.

Classic feature detectors and descriptors such as SIFT [2] and ORB [3] rely on hand-
crafted detectors and descriptors which fail in wide-baseline scenarios, texture-less
areas and other challenging situations. Incorrect matches have a fatal effect on pose
optimization, therefore, many methods rely on post-processing the matches to filter the
outliers. To do so, matches are filtered by the distance of the keypoints in feature space,
or by iterative approaches such as RANSAC [4]. However, these methods are slow and
perform poorly when there are too many outliers.

Figure 1.2.: Visualization of correspondences produced by SIFT. Correspondences are
pairs of coordinates from each image which, ideally, back-project to the same
point in space. The red arrows illustrate an example of an outlier, a wrong
match, which have a strong impact during pose estimation.

Learning-based approaches tackle this problem by directly regressing the relative pose
from a pair of frames, or by learning one (or more) steps from the classic pipeline: feature
detection, feature description, feature matching, outlier removal and pose estimation.
Nonetheless, methods that approach these steps do so in a decoupled manner. This
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results in the steps not being able to provide feedback to each other, and therefore, not
being able to learn from the final pose alignment.

To this end, we propose LRCE, a deep learning architecture to estimate the relative
camera transformation between a pair of RGB-D frames. The key idea to our method
is an end-to-end differentiable trainable pipeline which allows all components to be
informed by the final alignment of the predicted pose.

A differentiable weighted Procrustes aligner allows us to obtain gradients from the final
pose objective which is used to learn to weight the correspondences in a self-supervised
manner. Therefore, our method solves the pose optimization problem in a robust
manner.

Our model is formed by the following three components: i) Correspondence and
Visibility Prediction, ii) Correspondence Weighting, and iii) Differentiable Weighted
Procrustes.

Given a pair of RGB-D images, the model predicts the relative camera transformation
between the source frame and the target frame. First, the Correspondence Prediction
component computes 2D sparse matches and visibility scores between source and target
only using RGB channels. The visibility score allows the model to filter out occluded
points from the source frame which don’t have a match in the target frame. Afterwards,
the network uses the 2D correspondences to retrieve 3D matches using the depth frames
and predicts a confidence score for each weight. Finally, the 3D matches and confidence
scores are fed into a differentiable weighted Procrustes which optimizes the relative
pose.

We balance the use of supervised and self-supervised training for our model. First,
Correspondence Prediction and Visibility prediction are trained in a supervised fashion
using ground truth correspondences and visibility labels, which are computed from the
dataset’s frames and camera poses. Then, we train relative pose estimation with the
weights in an end-to-end self-supervised manner.This end-to-end loss also informs the
Correspondence and Visibility Prediction module improving its performance.

We evaluate our method in ScanNet [5] dataset. We show how feature matching results
improve when using the proposed weighting scheme. Similarly, we evaluate pose
estimation by comparing against the baselines and showing how the performance of
our method improves when using the self-supervised confidence scores as weights.

In summary, the main contributions of this thesis are the following:

• a correspondence and visibility prediction module for pairs of RGB frames

• a self-supervised module that learns correspondence weighting enabling robust
outlier rejection

• an end-to-end differentiable pipeline which enables all the modules to be optimized
with final pose objective
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1. Introduction

The source code is available1.

The rest of the thesis is structured as follows:

Chapter 2 reviews existing approaches which tackle feature detection, feature matching,
outlier filtering and the problem of pose estimation.

Chapter 3 presents the proposed method, LRCE, a CNN architecture with three main
components: Correspondence and Visibility prediction, Correspondence weighting and
a Differentiable Weighted Procrustes aligner.

Chapter 4 starts by reviewing the implementation and training details. Then it evalu-
ates and discusses the results for the tasks of matching, correspondence weighting and
pose optimization. Finally, ablation studies show the performance of the method with
different configurations.

Chapter 5 discusses the limitations of our approach and presents possible improve-
ments and further work.

Chapter 6 concludes this thesis by restating the key ideas and main contributions.

1https://github.com/marcbenedi/LRCE
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2. Related Work

In this chapter, we review different research efforts for the tasks related to the pose
estimation problem We start in Section 2.1 discussing classic feature matching and
continue in Section 2.2 with learning-based feature matching. In Section 2.3, we examine
the literature for outlier filtering which enables a more robust optimization of the pose,
and we end in Section 2.4 discussing methods which tackle the pose estimation problem.

2.1. Classic Feature Matching

Feature matching is classically approached as a multi-step pipeline: i) keypoint detection,
ii) feature description, iii) feature matching, and iv) outlier removal.

Classical methods solve these steps using hand-crafted geometry descriptors. Harris
Corner Detection [6] is a corner detection algorithm based on the difference in intensity
in all directions for a neighbourhood. However, corners look different in different images.
To tackle this issue, SIFT [2] introduces a scale-invariant corner detector which uses
nearest-neighbour search to create matches. Other hand-crafter methods are SURF [7],
FAST [8] and ORB [3] which are widely used in many tasks because of their good
performance.

In spite of their popularity, hand-crafted methods strive with large viewpoint/illumina-
tion changes, texture-less areas and repetitive patterns.

2.2. Learning-based Feature Matching

In the last decade, the increasing availability of reliable sensors enabled the construction
of datasets such as [5, 9]. These datasets allowed Deep Learning to revisit feature
matching as a learning-based problem.

LIFT [10] is one of the first successful learning-based feature description methods. They
solve detection, orientation estimation, and feature description in a unified manner using
an end-to-end approach. Other approaches construct a 4D cost volume, which stores the
cost of associating a pixel with its corresponding pixels. However, 4D cost volumes are
computationally expensive to construct and process due to their high dimensionality
caused by storing the cost of associating all keypoints on both frames. [11, 12, 13] explore
patterns in the cost volume to find matches using sparse convolutions. PWC-Net [14]
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2. Related Work

finds matches across images by predicting optical flow. That is, they regress a 2D offset
vectors per pixel.

Some other methods like SuperGlue [15] learn to match two sets of local features
provided by an independent component using a Graph Neural Network and the attention
mechanism. This combination allows them to leverage the relationship of keypoints in
the same image and to the other image. Then, they construct a score matrix by computing
the inner product of the features and find the matches as a partial assignment problem
on the score matrix using the Sinkhorn algorithm [16].

Other works based on SuperGlue such as Roessle [17] take advantage of the situations
where this problem arises, such as in video sequences, and use multiple-view to further
improve the performance. In addition, they add an end-to-end loss which allows the
network to learn from the final alignment.

However, these methods depend on an independent detector component which limits
their performance to the selected kepoints. Additionally, it means that feature detection
cannot benefit from an end-to-end loss. In contrast, our proposed method is end-to-end
differentiable and all components benefit from the final pose alignment.

A similar method is LoFTR [18], which presents a detector-free matching approach that
performs semi-dense pixel matching in a coarse-to-fine manner also using attention.
However, their method does not get any signal from the final pose alignment.

2.3. Outlier Filtering

Despite the improvements in the performance of feature detection and matching, out-
liers caused by erroneous correspondences have a strong negative impact during pose
optimization. In addition, sensor data, particularly depth frames, are prone to contain
noise due to sensor accuracy, working range or environment conditions such as mirrors
or glass.

A common approach is performing outlier removal after feature matching in an attempt
to remove the outliers from the problem constraints. A widely used algorithm for such
a task is Random Sample Consensus (RANSAC) [4], which aims to iteratively find
solutions for randomly selected subsets of correspondences, estimate their alignment,
and then select the solution with minimum error. However, RANSAC is slow because of
its iterative sampling approach and suffers when the signal-to-noise ratio decreases.

Methods which learn the matching function, such as SuperGlue, filter outliers by
matching them to a "dustbin". This dustbin is added by extending the score matrix with
a row and a column.

Several methods leverage learning a weighting scheme for the correspondences. Deep
Global Registration [19] tackles the problem of point cloud registration using a CNN

6



2.4. Camera Pose Estimation

architecture. Their method directly finds correspondences in the 3D data whereas we
find the matches in the 2D image domain which then we back-project to 3D using the
depth data. They follow a similar approach to perform robust optimization by predicting
confidence weights for each match. In addition, both approaches train correspondence
weighting in a self-supervised manner using the final pose alignment as a loss function.

Other approaches learn to filter outliers as a binary classification problem. Yi, Trulls,
Ono, et al. [10] present an approach to classify correspondences. Their method is
supervised by exploiting the epipolar geometry. This allows them not having to label
the correspondences explicitly.

2.4. Camera Pose Estimation

Pose estimation is the last step in the pose optimization pipeline. It is a very well-studied
method in Computer Vision because it is a key component in many applications such as
3D reconstruction, SfM or SLAM. The 8-point algorithm [20] and its derivative works
can be used to recover the Essential matrix E which relates correspondences between
two images. From the Essential matrix, it is possible to recover 5 degrees of freedom
from the relative transformation between the two cameras, since it is not possible to
recover the scale of the translation component. Similarly, if the camera parameters are
unknown, we can recover the Fundamental matrix F. For a full in-depth explanation,
we refer the reader to [21].

The methods mentioned above only use 2D data from images and therefore have
limitations such as scale ambiguity. Another field takes advantage of 3D information
and approaches the pose estimation problem as a point cloud registration, that is, finding
the transformation between two sets of points. Iterative Closest Points (ICP) [22], tackles
the problem with an iterative approach with two steps: i) estimate correspondences
between the two sets of points, ii) find a rigid transformation which minimizes an
objective function. However, ICP only converges to a good alignment if the starting
positions are close enough.

Kendall, Grimes, and Cipolla [23] introduce a method for absolute pose regression.
Their method uses convolutional layers to extract features from RGB images and then
a fully connected layers to regress the 6 degrees of freedom of the pose. In addition,
they leverage transfer learning from a network trained for a classification task. However,
although both relative pose and absolute pose problems estimate a 6-DOF transformation
they are inherently different since the former approach can generalize to unseen scenes
whereas the latter one is trained per scene [24].

Other learning-based approaches directly regress relative poses from RGB images.
Melekhov, Ylioinas, Kannala, and Rahtu [25] present a Siamese network architecture
adopting the same learning objective as [23] but for relative camera pose.
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2. Related Work

Recent end-to-end approaches integrate feature matching with pose optimization.
Roessle and Nießner [17] present an approach for feature matching using differen-
tiable pose optimization. Similar to our method, their pipeline is end-to-end trainable
and they predict confidence scores which are trained in a self-supervised manner from
the pose objective. However, in contrast to our work, their method depends on a given
set of feature descriptors, which means that feature description and the rest of the
pipeline remain disconnected and cannot inform each other.
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3. Method

In this chapter, we introduce LRCE, our proposed network architecture for solving the
pose estimation problem. We begin with an overview of the model (Section 3.1) followed
by a detailed explanation of all its components: Correspondence and Visibility Estimation
(φ) (Section 3.2), Correspondence Weighting (ω) (Section 3.3) and Differentiable Weighted
Procrustes (Section 3.4). Finally, we describe the loss used to train our components in an
end-to-end fashion (Section 3.5). We refer the reader to Section 4.1 for implementation
and training details.

We define the relative pose estimation problem formally as: given a pair of frames,
source S and target T, find the euclidean transformation TTS which aligns the source
frame to the target frame. The transformation TTS is defined as TTS(p) = Rp + t, where
p belongs to S and TTS(p) belongs to T. R is an orthogonal transformation, i. e. it has
the following properties: R ∈ SO(3), R ∈ R3×3, RTR = I, det(R) = 1. These force R to
be a rotation matrix, i. e. without reflections. t ∈ R3 is a translation vector.

Each frame has the following information associated: RGB image C ∈ RH×W×3, depth
image D ∈ RH×W and the camera pose P ∈ R4×4. Additionally, we back-project the
values of D and obtain the associated point cloud B ∈ RH×W×3.

We also have known camera parameters K ∈ R4×4. Figure 3.1 shows a diagram of the
problem and all its components.

3.1. Overview

Given two frames, S and T, our method computes the relative pose between the two
cameras following these steps:

1. Select Q := {q1, . . . , qn |qi ∈ R2}, a set of n query pixels from CS.

2. Using the Correspondence Estimation module (φ), predict a set of correspondences
M := {m1, . . . , mn|mi ∈ R2}. Ideally, mi are the coordinates of qi in CT.

3. Additionally, we predict a set of visibility scores V := {v1, . . . , vn|vi ∈ (0, 1)},
where vi indicates if qi is visible in CT.

4. Next, we recover the 3D points associated with Q and M from BS and BT respec-
tively. We denote these sets of back-projected pixels as Q := {q1, . . . , qn|qi :=
BS[qi] ∈ R3} and M := {m1, . . . , mn|mi := BT[mi] ∈ R3}.

9



3. Method

Figure 3.1.: Diagram of the pose estimation problem between two frames: S and T. The
transformation TTS transforms points from S to T. The tuple (qi, mi) is a
valid match because their back-projection to the 3D world is the same, the
point P.

Figure 3.2.: LRCE: based on a pair of RGB-D frames: S and T, our method estimates the
relative camera transformation between the frames. To this end, we propose
an end-to-end CNN-based architecture which solves the problem in 3 steps: i)
Correspondence and visibility prediction (φ), ii) Correspondence weighting
(ω), iii) Differentiable Weighted Procrustes (ρ). Our end-to-end approach
enables all learnable steps to be informed by the final pose estimation
objective.
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3.2. Correspondence and Visibility Estimation (φ)

5. To perform a robust optimization of the relative pose, the Correspondence Weighting
module (ω) outputs a set of confidence scores W := {w1, . . . , wn|wi ∈ (0, 1)}. As
input, it takes the values of CS at pixels Q, the values of CT at coordinates M, the
values of BS at coordinates Q, and BT at coordinates M.

6. Finally, the Differentiable Weighted Procrustes (ρ) regresses the pose TTS which aligns
Q and M using W to weight the matches during optimization.

We refer the reader to Figure 3.2 for a diagram of our pipeline.

3.2. Correspondence and Visibility Estimation (φ)

Figure 3.3.: Architecture of the Correspondence and Visibility prediction component (φ).
Input to this component are two RGB frames, CS and CT, from which n heat
maps Hi of dimensions h × w are predicted.

The first step to solve the pose estimation problem is finding a set of pixels in both
images which represent the same point in the 3D world. See Figure 3.1 for a diagram of
the described scenario. Motivated by the work of [26], we propose a CNN architecture
based on a Siamese network with two towers and shared parameters. As input, this
component takes two RGB images, CS and CT, of dimensions H × W × 3. As output,
the method estimates a set M of 2D pixel coordinates for a set of query pixels Q and
their visibility scores V. The set of query pixels is always the same for all pairs of
images and it depends on the hyper-parameter n which can be changed to accommodate
different memory requirements. We select the query pixels such that they are evenly
distributed across the image. Naturally, the method predicts dense correspondences
when n = H · W.

11



3. Method

φ : RH×W×3 × RH×W×3 → Rn×2 × Rn,

φ (CS, CT) → (M, V)
(3.1)

Heat map The goal is to predict a set of heat maps H :=
{
Hi, . . . ,Hn|Hi ∈ [0, 1]h×w

}
.

Each heat map Hi encodes the likelihood of the location of qi in CT but at a resolution
of h × w instead of H × W. For more details, we refer the reader to Section 4.1. Let Dout

be the output of the last layer of the decoder. We compute two heat map volumes Hsg

and Hsm:

Hsg = σsg (Dout) ,

Hsm = σsm (Dout)
(3.2)

where σsg and σsm indicate the sigmoid and softmax activation functions respectively.
Note that σsm is applied channel-wise, i. e. it is equivalent to applying σsm to each Hi
independently. Hsg maps all values to the range [0, 1]. This is equivalent to independent
binary classification problems per pixel. Hsm ensures that ∑j Hi (j) = 1, therefore, each
Hi makes a complete probability distribution. Finally, H is computed as H = Hsg ⊗Hsm,
where ⊗ denotes the Hadamard product.

From heat maps to 2D-coordinates To retrieve the set of 2D-coordinates M from H,
it is necessary to locate the coordinates of the pixel with maximum value. The argmax
operator can be used to obtain such coordinates, however, it is non-differentiable. An
alternative is using the soft-argmax operator which is differentiable and enables the
gradients to flow from the end-to-end loss. In short, the soft-argmax of a tensor T is
defined as ∑i σsm(T)i ⊙ Gi, where G is a tensor of the same dimensions as T where each
element contains its coordinates. In other words, this operator is a weighted sum of the
coordinates in G. In our case, each heat map Hi is already normalized (sums up to 1),
therefore, we just multiply it element-wise with a tensor of dimensions h × w × 2 and
sum the result. For each heat map Hi we obtain mi, therefore, H results in M. We then
scale the values from the range (0, 0)− (h, w) to (0, 0)− (H, W). Note that the values of
mi are continues, thus achieving sub-pixel accuracy.

Finally, we apply bilinear interpolation to BT at each mi obtaining M.

Visibility As previously seen, the heat maps express the likelihood of a pixel being
a match, therefore, they sum up to 1. This means that the Correspondence Estimation
component cannot produce an empty heat map and express whereas a query pixel is
visible in CT. This can happen if the match is outside the image boundaries or occluded
by some object. Therefore, this component learns to predict if the query pixel qi is visible
or not in CT.
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3.3. Correspondence Weighting (ω)

This module takes as input the output of the bottleneck B and outputs a 1-dimensional
vector V := {v1, . . . , vn}. We apply the sigmoid operator to the set so that all vi ∈ [0, 1].

φ : RH×W×3 × RH×W×3 → Rh×w×n,

φ (CS, CT) → V
(3.3)

Loss

During optimization, we supervise the heat maps using a similar loss to [26] but
extended to optimize a volume with n heat maps instead of a single one:

LH =∑
i

VgtΦbce(wH(Hsg −Hgt))+

λnll ∑
i

VgtΦnll(wH(Hsm −Hgt))
(3.4)

where Φbce denotes binary-cross entropy loss, Φnll denotes negative-log-likelihood loss,
Hgt denotes the ground-truth heat maps and wH is a weight tensor which assigns higher
weights to the elements closer to the ground-truth match pixel coordinates. We use the
ground truth visibility labels to mask out occluded correspondences and λnll = 10.

Hgti are generated by creating a zero tensor of dimensions h × w and setting the value
of at mgti to 1. To prevent the network from predicting only zero values, we apply a
Gaussian kernel around mgti with standard deviation of 1. This decays the neighboring
pixel values to zero. In a similar manner, wH are defined as 1 + 10Hgt.

We supervise visibility as a binary classification problem:

LV = ∑
i

Φbce
(
V − Vgt

)
(3.5)

The ground-truth visibility labels are generated using the ground-truth relative poses
and the depth frames. For more details about how the ground truth labels are obtained
see Section 4.2.

3.3. Correspondence Weighting (ω)

For each match (qi, mi), we additionally predict a weight wi ∈ (0, 1) to diminish the
effect of outliers and therefore enabling a more robust optimization.

The weighting function ω takes as input two tensors of dimensions h × w × 6. These two
tensors are constructed by appending the RGB values of the query/match pixels and the
associated 3D values from the back-projected depth frame. In other words: (CS[qi] ∥ qi)
and (CT[mi] ∥ mi).

13



3. Method

Figure 3.4.: Architecture of the Correspondence Weighting component (ω). Input to this
component are the color and back-projected point of S, T at Q, M respectively.
It predicts a confidence score per match.

ω : Rh×w×3 × Rh×w×3 × Rh×w×3 × Rh×w×3 → Rn,

ω (CS[Q], CT[M], Q, M) → W
(3.6)

At test time, we multiply W element-wise with V. Intuitively, this allows the network to
learn to filter outliers with a supervised term (visibility) and a free variable (weights).

Loss

We allow this component to be optimized in a self-supervised manner. We do not
generate ground-truth labels for the weights as we want the model to learn to filter
inliers/outliers in a manner that reduces the pose objective function.

3.4. Differentiable Weighted Procrustes (ρ)

Pose Optimization is the final stage which minimizes the alignment objective between
the two set of points Q and M. The alignment objective we minimize is:

1
n

n

∑
i=1

wi||mi − Rqi − t||2 (3.7)
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3.5. End-to-end Loss

where R, t are defined as at the beginning of Chapter 3.

Note that because of the quadratic term, outliers would have a big effect if they were
not down-weighted by wi.

The solution to this problem is known as the Weighted Procrustes analysis. As shown
by [27], the closed solution for R and t is:

R = USVT

t = (M − RQ)diag(W̃)1
(3.8)

where W̃ are the normalized weights, USVT = SVD(ΣQM), ΣQM = MKWKQT, K =

I −
√

W̃
√

W̃
T

, and S = diag(1, . . . , 1, det(U), det(V)).

3.5. End-to-end Loss

As specified in the previous section, we don’t use ground-truth annotations for the
correspondence weighting. We use two objective functions: Pose loss and Correspondence
loss. The differentiable pipeline allows gradients to flow from these objectives to the
Correspondence Weighting (ω) component. Additionally, the Correspondence and Visibility
Prediction (φ) parameters are informed by these objectives, further improving their
performance. See Section 4.7 for the corresponding ablation study.

Pose loss This function minimizes the distance between the estimated relative pose,
TTS, and the ground-truth pose T gt

TS.

We empirically found that representing the pose as a dual-quaternion resulted in the
best performance. Dual-quaternions combine the rotation and translation components
of the relative pose into a single representation which is compact, as it doesn’t require
additional memory such as the matrix-vector representation, is continuous, and can be
interpolated.

For details about dual-quaternions algebra, we refer the reader to [28].

Lpose =
1
n
||dq(TTS)dq(T gt

TS)
∗ − Idq||2 (3.9)

We use Equation 3.9 as our pose objective. dq is a mapping which transforms poses
in matrix notation to dual-quaternion. The ∗ denotes the conjugate operation. For
unit quaternion, the conjugate is the same as the inverse. Idq denotes the identity
dual-quaternion: [1, 0, 0, 0] [0, 0, 0, 0]
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3. Method

Correspondence loss Additionally, we minimize the distance between the 3D matches
M and its ground-truth Mgt. We use Vgt to mask occluded matches from the optimiza-
tion.

Lmatches = Vgt||M − Mgt||q (3.10)

Where q = 0.4.
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4. Experiments and Results

In this chapter, we present experiments and their quantitative and qualitative results to
evaluate the approach presented in this thesis for the different tasks it solves. First, we
discuss implementation details (Section 4.1) and the data used to train and evaluate the
model (Section 4.2). We then evaluate the performance of our method in the three tasks
it tackles: Matching (Section 4.3), Correspondence Weighting (Section 4.4) and Pose
Optimization (Section 4.5). Finally, we discuss the runtime performance (Section 4.6)
and ablation studies (Section 4.7) to justify different design choices.

4.1. Implementation Details

In this section, we elaborate on the implementation details of our method. First, we will
define the dimensions used in Chapter 3:

• The dimensions of the frames used as input to the Correspondence and Visibility
Prediction component (φ) are H = 224 and W = 224. We center and then crop the
images from ScanNet to resize them from 640 × 480 to 224 × 224.

• The dimensions of the predicted heat maps Hi are h = 32 and w = 224.

• The number of matches we predict is n = 1024. Therefore, the dimensions of the
output volume H are 32 × 32 × 1024.

Table 4.1.: Number of parameters per component of our proposed architecture.

Component # Parameters

Correspondence and Visibility Prediction (φ) 19949982
Encoder 809208
Bottleneck 886464
Decoder 17885213
Visibility 369097

Correspondence Weighting (ω) 8977

Total 19958959

Our model requires approximately 20M parameters. See Table 4.1 for a detailed view of
the number of parameters per component.
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4. Experiments and Results

For more details about the architecture, we refer the reader to Appendix A.

Training details. We implement our approach in PyTorch [29]. We use Stochastic
Gradient Descent as our optimizer with momentum 0.9, a learning rate of 0.05 and a
batch size of 16. Additionally, we decay the learning rate by a factor of 0.1 every 30k
iterations. For regularization, we use a weight decay of 1−5.

During training, we apply the following augmentations: We invert the pairs with a
probability of 0.5. This means that instead of estimating matches and the pose from
s → t, we do it from t → s. We also apply random changes to the brightness, contrast,
saturation and hue of the RGB frames.

We train our method in two steps. Firstly, we train the correspondence and visibility
prediction until convergence which is reached after 60k iterations. The loss used for
this first step is λHLH + λVLV , where λH = 1 and λV = 1. Afterwards, we include
the correspondence weighting component in the optimization and we train the whole
architecture with the end-to-end loss. λHLH + λVLV + λposeLpose + λmatchesLmatches with
λH = 0.1, λV = 0.1, λpose = 10 and λmatches = 0.5. This second phase converges after 80k
iterations.

4.2. Dataset

We use ScanNet [30] to train and evaluate our method for correspondence matching,
correspondence weighting and robust pose optimization. ScanNet is a video dataset of
2.5 million views in more than 1500 scans of indoor environments. Each scan is a video
sequence of frames, and for each frame, it provides the following information: color
image, depth image and camera pose. ScanNet also provides the camera parameters for
each scan.1

To train and test our method, we sample pairs of frames belonging to the same scan
sequence where the overlap between the frames lies within an interval. Unlike previous
works [15, 17], which enforce the overlap to be in the range [0.4, 0.8], we empirically
found that an overlap within [0.1, 1.0] includes more variability among the pairs resulting
in a more robust method for wide-baseline scenarios. However, this might create a
more unstable optimization during training since the number of correspondences can
be smaller resulting in a degenerate case. Figure 4.2 shows the distribution of poses for
both overlap constraints. The overlap is computed using the ground truth camera poses,
depth frames and camera parameters of the scene. We obtain 601k train pairs and 154k
validation pairs.

For each frame f of a sequence, we compute its overlap with frames f + i, i ∈ [10, 20, . . . , 100].
If the overlap does not lie in the interval [0.1, 1.0], it is discarded.

1ScanNet provides more data and annotations but we only mention the data used by our method.
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4.3. Matching Evaluation

We label each pixel from the frame as visible, occluded or unknown. A pixel in f is
visible on f + i, if the distance between the 3D correspondences is at most 0.03 meters.
If the distance is bigger than 0.08 meters or the coordinates of the correspondence fall
outside the image boundaries, then the pixel is labeled as occluded. In any other case,
such as invalid depth values or distance between 0.03 and 0.08 meters, the pixel is
labeled as unknown.

Figure 4.1 shows the relative poses in the dataset for train and validation splits.

Figure 4.1.: Visualization of the poses where overlap between frames lies in [0.4, 0.8]
(left) and [0.1, 1.0] (right). We can observe that the distribution of poses
generated with the less constrained interval (right) has more variation.

Figure 4.2.: Distribution of the poses for train and validation splits. We can see how both
components (rotation and translation) contain large elements. This exposes
our method to wide-baseline pairs which are more challenging.

4.3. Matching Evaluation

We first evaluate correspondence estimation for pairs of RGB images.
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4. Experiments and Results

Baselines. We compare our method with two classic feature descriptors and matching
algorithms: SIFT [2] and ORB [3]. We use the implementation provided by OpenCV [31]
with the recommended configuration which empirically proved to be the best one. We
also compare our method with the current state-of-the-art, LoFTR [18], with the publicly
available implementation2. We filter out the correspondences with a confidence score
θ < 0.2 as recommended by the authors in the original work.

For our method, LRCE, we evaluate four different weighting schemes and filter out
the matches with weight w < 0.5. The first weighting scheme, LRCE(A), uses a weight
of 1 for all correspondences, therefore, it considers all predicted matches. The second
scheme, LRCE(V), uses the predicted visibility score as weight. The third, LRCE(W),
uses the weight score to filter out correspondences, and finally, LRCE(V*W), combines
both visibility and weight scores.

Note that SIFT, ORB, LRCE(A), LRCE(V) methods only use RGB frames. The variants
LRCE(W) and LRCE(V*W) also use the depth frame in order to predict the weights.

Quantitative Results. Table 4.2 shows the 2D/3D performance of our network com-
pared to the other methods. 2D/3D-err columns show the average distance between the
predicted matches and the ground truth. The 2D/3D-acc columns denote the accuracy
of the predicted matches. A match is considered correct in 2D if the distance is less than
20 pixels. For 3D, the threshold is set at 0.10 meters. The current state-of-the-art, LoFTR,
outperforms all other methods by a significant margin. For our method, LRCE, we see
that adding the weighting scheme, either visibility or weights, significantly improves
the performance. As previously explained in Section 3.2, without visibility the method
cannot express when a query pixel is not visible in the target frame. When using weights,
the method has information about the depth information and therefore the performance
increases. Finally, by combining both, the method can reason about the supervised
classification variable (visibility) and the self-supervised output (weights).

Figure 4.3 illustrates the error in pixels/meters for the 2D/3D correspondences grouped
by translation/rotation threshold. We can observe how LoFTR is very resilient to the
translation component of the relative pose, both in 2D and 3D. However, we can see
how LRCE outperforms LoFTR for big rotations.

For visibility classification, our model achieves an accuracy of 0.89, a precision of 0.84
and a recall of 0.92 on the validation dataset.

Qualitative Results. In Figure 4.4 we can see some examples of frames and the matches
produced by the different baselines and our method. We filter out correspondences
using the same thresholds as in paragraph 4.3. Hand-crafted algorithms produce very
few matches, which is critical for indoor scenes where objects can be easily occluded

2https://github.com/zju3dv/LoFTR
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4.3. Matching Evaluation

Figure 4.3.: Average 2D/3D error in pixels/meters per translation/rotation threshold.
The current state-of-the-art, LoFTR, is robust to translation and outperforms
the rest of the methods. Our method, LRCE, is robust to large rotations and
outperforms the rest on this condition.
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4. Experiments and Results

Table 4.2.: LoFTR outperforms all baselines followed by LRCE(V*W). 2D/3D errors are
the average of pixel/point errors, and 2D/3D accuracy is the percentage of
pixels/points with distance of at most 20 pixels/0.10 meters.

Method 2D-err 3D-err 2D-acc 3D-acc
SIFT [2] 18.56 0.16 0.88 0.86
ORB [3] 31.27 0.27 0.78 0.75
LoFTR [18] 6.78 0.05 0.98 0.97
LRCE(A) 23.04 0.21 0.72 0.59
LRCE(V) 17.84 0.15 0.85 0.76
LRCE(W) 13.63 0.10 0.92 0.85
LRCE(V*W) 11.88 0.08 0.93 0.89

and the overlap can be minimal. Learning-based methods produce more matches from
which we show at most 16 to avoid cluttering.

4.4. Correspondence Weighting

In this section, we analyze the behaviour of the Correspondence Weighting module which
is trained in a self-supervised manner from the pose objective.

Figure 4.5 shows the histograms of the predicted weight and visibility scores for visible,
occluded and unknown matches. Firstly, we can see that the Visibility Prediction compo-
nent successfully learns how to classify the matches, as it is evident that the predicted
labels for visible matches are all near one. Similarly, we can see how the predicted
labels for occluded points are close to zero. We also show the distribution for unknown
matches, which we mask out from the loss during optimization as we do not know its
ground truth label.

Secondly, we can observe how the Correspondence Weighting component learns to filter
out occluded matches as all the predictions are close to zero. This means that this
components successfully enables robust optimization as outliers will be down-weighted
during pose estimation. For visible matches, we observe that the distribution contains
most of the predictions on the [0.5, 1.0] range, meaning they will have higher influence
during pose estimation. However, some of the visible matches are assigned a lower
weight. This has two explanations: 1) The Correspondence Prediction component failed at
estimating an accurate match, therefore it is down-weighted to nullify its effect during
pose estimation. 2) A match may be visible in the RGB frames, but it may become an
outlier when back-projected to 3D coordinates due to noise in the depth frame or it
being near surface discontinuities such as edges.
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4.4. Correspondence Weighting

Figure 4.4.: Visualization of the matches predicted by the baselines and our method.
Green indicates a correct match (within 20 pixels of the ground truth) and
red an incorrect match. To avoid cluttering, we show 16 randomly selected
correspondences after filtering out by the corresponding weighting scheme.
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4. Experiments and Results

Figure 4.5.: Histograms for the predicted weights and visibility scores for visible, oc-
cluded and unknown matches. We can observe the model correctly classifies
visible and occluded matches. Additionally, it is able to successfully learn to
filter outliers in a self-supervised manner.

4.5. Pose Optimization

In this section, we evaluate the results for the task of relative camera pose optimization.

Baselines. For this task, we compare our method against LoFTR and ICP [22] imple-
mented using Open3D [32].

Quantitative Results. Figure 4.6 displays cumulative curves for translation and rotation.
We represent the rotation error as the angle between the ground truth and predicted
rotations. For translation, we represent the error as the angle between the normalized
vectors instead of the L2-norm. This is due to LoFTR not predicting the scale of the
translation.

Table 4.3 lists the accuracy score per method. A pose is considered correct if the distance
between the predicted and ground truth rotation and translation is below 20 degrees.

Figure 4.6.: Cumulative plots for Translation (left) and Rotation (right) of the accuracy
of the model for allowed error. The Y-axis shows the percentage of predicted
poses and the X-axis the allowed error.
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4.6. Runtime Performance

Table 4.3.: Pose accuracy per method. The pose is considered correct if the angle error
for both translation and rotation is under 20 degrees. LoFTR outperforms the
rest of the methods, followed by LRCE. Due to the wide-baseline setup of the
camera poses, ICP achieves a low accuracy.

Method Accuracy

ICP 0.09
LRCE 0.58
LoFTR 0.68

Qualitative Results. Figure 4.7 shows examples of input frames aligned with the
ground truth camera pose, our method and ICP.

Figure 4.7.: Reconstruction from estimated camera poses on ScanNet pairs. Our method
successfully estimates the camera transformation. In the last example, the
pose regressed by ICP shows a clear misalignment.

4.6. Runtime Performance

We measure the execution time of a single forward pass of our method. The hardware
used for this measurement is an NVIDIA GeForce RTX 3090 and 8 CPU cores. The
inputs are two RGB-D frames of dimensions 224 × 224 and the output is the estimated
relative pose. A single forward pass runs in approximately 16 ms. This is divided into
two parts: 10.89 ms are from the Correspondence and Visibility Prediction and 5.11 ms from
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4. Experiments and Results

Correspondence Weighting and Weighted Procrustes.

4.7. Ablation Study

In this section, we demonstrate the effects of different components of our method.

Visibility and weight scores effect. We can verify the effect of weighting for the
tasks involved in this method. Firstly, Table 4.2 shows how the matching performance
improved when correspondences are filtered based on their weight. This proves that a
weight closer to zero is assigned to outliers.

Secondly, we evaluate the following weighting schemes in the pose estimation problem:
i) Equal (E) sets equal weight for all matches, ii) RANSAC(R) filters outliers using
RANSAC [4], iii) Visibility (V) weights correspondences using predicted visibility scores,
iv) Weights (W) uses predicted weight scores, v) Visibility * RANSAC (V*R) vi) Weights *
RANSAC (W*R) vii) Visibility * Weights * RANSAC (V*W*R) and viii) Visibility * Weights
(V*W) multiply the scores provided by each weighting scheme.

Figure 4.8 shows the cumulative plots for all the weighting schemes and Table 4.4 lists
their accuracies. We can observe that the method has the lowest performance when no
correspondence weighting is used. Filtering outliers using RANSAC slightly boosts the
performance. Using the supervised visibility score (V) or the self-supervised weights
(W) further improves the performance. Finally, combining visibility and weights (V*W)
obtains the best performance. Intuitively, this gives the network the flexibility to weight
correspondences using the supervised label and to down weight outliers using the
self-supervised score optimized from the final alignment loss.

Figure 4.8.: Cumulative plots for translation (left) and rotation (right) of the accuracy
per allowed error for the different weighting schemes.

Training Correspondence and Visibility Prediction component with end-to-end loss.
In this experiment, we demonstrate that the Correspondence and Visibility Prediction
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4.7. Ablation Study

Table 4.4.: We can see that the weighting scheme (V*W) obtains the best performance.
The network successfully learns to filter outliers in a self-supervised manner.

Method Accuracy

Equal (E) 0.17
RANSAC (R) 0.29
Visibility * RANSAC (V*R) 0.46
Weights * RANSAC (W*R) 0.48
Visibility (V) 0.49
Visibility * Weights * RANSAC (V*W*R) 0.52
Weights (W) 0.58
Visibility * Weights (V*W) 0.59

Table 4.5.: Evaluation of correspondence prediction without the end-to-end loss.
Method 2D-err 3D-err 2D-acc 3D-acc
LRCE(A) 28.19 0.24 0.67 0.51
LRCE(V) 23.45 0.19 0.79 0.62
LRCE(W) 16.74 0.11 0.88 0.78
LRCE(V*W) 13.75 0.09 0.91 0.81

module benefits from the end-to-end loss. That is, the pose alignment gradients are able
to inform the 2D correspondences.

We first train the Correspondence and Visibility Prediction component in a supervised
manner using LH and LV as detailed in Section 4.1. Then, we freeze this component
and continue training with the Correspondence Weighting and the end-to-end loss.

Table 4.5 shows the evaluation of the matches produced by this model. When compared
to Table 4.2, we can see that by allowing the gradients from the end-to-end loss the 2D
accuracy increased by 2% and the 3D accuracy increases by 8%.
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5. Limitations and Further Work

While we have shown that our method outperforms some of the baselines, it is still far
from current state-of-the-art such as [18, 15, 17]. All these methods use the attention
mechanism to gather information within and across frames which is a key feature for
correspondence estimation. In contrast, Convolutional Neural Networks suffer from
poor global context due to their limited receptive field.

Due to predicting correspondences through a heat map representation, the output of
our model requires large amounts of memory. This limits us to predict low-resolution
heat maps for a sparse set of correspondences which can be harmful in situations where
the overlap between frames is minimum due to not having enough information to
recover the pose. Additionally, constructing such volume with 2D convolutions requires
a model with a large capacity because of the number of channels. Our approach uses 3D
convolutions for building such volume, which allows us to slide the same filter across
the height, width and depth but at the expense of run time.

To improve the current performance, we can implement a coarse-to-fine pipeline to
refine the matches across different resolution levels. We can also change the method
for selecting the pixels from which we compute correspondence. Instead of selecting
the same arbitrary set for all pairs of frames, we can let the method suggest a set of
query points based on their quality. Finally, we can train the network over a uniform
distribution of relative poses to ensure that the network can generalize to wide-baseline
camera transformations.
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6. Conclusion

In this Master’s Thesis, we present Learning Robust Correspondences Estimation (LRCE),
an end-to-end differentiable neural network to tackle the relative pose estimation prob-
lem.

Our method first predicts sparse correspondences and visibility scores for a set of query
pixels using the color frames. Then, utilizing the predicted matches and the depth
information, the method predicts a set of confidence scores. These scores are learnt in a
self-supervised manner from the end-to-end loss, which minimizes the distance between
the predicted and ground truth poses. These confidence and visibility scores are then
combined and used to weigh the matches in our differentiable Weighted Procrustes
aligner, which estimates the relative pose in a robust manner.

Our experiments show that the end-to-end loss is able to train our model to predict
confidence scores in a self-supervised manner and improve the performance of corre-
spondence prediction. This results in a more robust pipeline for solving relative camera
pose estimation.
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A. Network Architecture Details

In this section, we describe in more detail the full architecture of our model. We
adapted the following building blocks from DeepDeform [26]: ResBlock, DownScaleBlock
and UpScaleBlock. Additionally, we define the block ExpandBlock which is used to
increase its number of features. Due to memory limitations, this block is implemented
with 3D convolutions. The 2D input of dimensions h × w × c is extended to 3D as
h × w × d(= 1)× c. We then increase d while decreasing c. The advantage with respect
to the 2D approach is that we don’t need additional parameters to increase the number
of channels, as we do it by increasing the d dimension and then reinterpreting the
dimensions of the tensor.

Our model is divided into two architectures: Correspondence and Visibility Prediction (En-
coder, Bottleneck, Visibility, Decoder) and Correspondence Weighting. Similar to DeepDeform,
we use U-Net [33] skip connections between the encoder and the decoder.

Table A.1.: ResBlock. It is the main building block of our architecture. It contains a skip
connection between the input and the second convolution layer.

ResBlock(f0, f1)

Layer Channels(input, output) Kernel Stride Padding

Conv2d (f0, f1) 3 1 1
BatchNorm2d f1 - - -
ReLU - - - -
Conv2d (f1, f1) 3 1 1
BatchNorm2d f1 - - -
ReLU - - - -
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A. Network Architecture Details

Table A.2.: DownScaleBlock. It is used in the Encoder component to extract features
from the inputs, reducing its size while increasing the channels.

DownScaleBlock(f0, f1)

Layer Channels(input, output) Kernel Stride Padding

Conv2d (f0, f1) 4 2 1
BatchNorm2d f1 - - -
ReLU - - - -
ResBlock f1 - - -
ResBlock (f1, f1) - - -

Table A.3.: UpScaleBlock. It is used in the Decoder component to increase the size of the
input while decreasing the number of channels.

UpScaleBlock(f0, f1)

Layer Channels(input, output) Kernel Stride Padding

ResBlock (f0, f0) - - -
ConvTranspose2d (f0, f1) 6 2 2
BatchNorm2d f1 - - -
ReLU - - - -

Table A.4.: ExpandBlock. It is used in the Decoder component to decrease the number of
features of the input while increasing its width. The rest of the dimensions
stay the same.

ExpandBlock(f0, f1)

Layer Channels(input, output) Kernel Stride Padding

ConvTranspose3d (f0, f0) (2, 3, 3) (2, 1, 1) (0, 1, 1)
ConvTranspose3d (f0, f1) (2, 3, 3) (2, 1, 1) (0, 1, 1)
BatchNorm3d f1 - - -
ReLU - - - -
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Table A.5.: Encoder. The encoder takes one RGB image as input and outputs a 7× 7× 96
feature tensor.

Encoder

Layer Channels(input, output) Kernel Stride Padding

DownScaleBlock (3, 24) - - -
DownScaleBlock (32, 32) - - -
DownScaleBlock (32, 48) - - -
DownScaleBlock (48, 64) - - -
DownScaleBlock (64, 96) - - -

Table A.6.: Bottleneck. It takes the concatenated output of the Encoder for both RGB
frames, 7 × 7 × 192, and outputs a tensor of dimensions 7 × 7 × 256.

Bottleneck

Layer Channels(input, output) Kernel Stride Padding

Conv2d (192, 128) - - -
BatchNorm2d 128 - - -
ReLU - - - -
Conv2d (128, 192) - - -
BatchNorm2d 192 - - -
ReLU - - - -
Conv2d (192, 256) - - -
BatchNorm2d 256 - - -
ReLU - - - -
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A. Network Architecture Details

Table A.7.: Decoder. The decoder takes the output of the Bottleneck and outputs a
tensor of dimensions 32 × 32 × 1024. We add skip connections between the
intermediate results of the Encoder and the UpScaleBlock.

Decoder

Layer Channels(input, output) Kernel Stride Padding

UpScaleBlock (256, 256) - - -
UpScaleBlock (256 + 2 * 96, 256) - - -
UpScaleBlock (256 + 2 * 64, 256) - - -
ConvTranspose3d (256, 256) (2, 3, 3) (1, 1, 1) (0, 1, 1)
ConvTranspose3d (256, 192) (2, 3, 3) (2, 1 ,1) (0, 1, 1)
BatchNorm3d 192 - - -
ReLU - - - -
ExpandBlock (192, 128) - - -
ExpandBlock (128, 64) - - -
ExpandBlock (64, 16) - - -
ConvTranspose3d (16, 4) (2, 3, 3) (2, 1, 1) (0, 1, 1)
ConvTranspose3d (4, 1) (2, 3, 3) (2, 1, 1) (0, 1, 1)

Table A.8.: Visibility. It takes the output of the Bottleneck and outputs a vector of size
1024.

Visibility

Layer Channels(input, output) Kernel Stride Padding

ExpandBlock (256, 32) - - -
ExpandBlock (32, 16) - - -
ExpandBlock (16, 8) - - -
ExpandBlock (8, 4) - - -
ExpandBlock (4, 2) - - -
Conv3d (2, 2) (3, 4, 4) (1, 1, 1) (1, 0, 0)
Conv3d (2, 1) (3, 4, 4) (1, 1, 1) (1, 0, 0)
Sigmoid - - - -
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Table A.9.: Correspondence Weighting. This component takes as input the color of the
correspondences as a tensor of dimensions 32 × 32 × 6 combined with the
back-projected points associated with the correspondences 32 × 32 × 6. It
output vector of size 1024 with weight scores ∈ [0, 1].

Correspondence Weighting

Layer Channels(input, output) Kernel Stride Padding

Conv2d (12, 16) 3 1 1
BatchNorm2d 16 - - -
ReLU (16, 16) - - -
ResBlock (16, 16) - - -
ResBlock (16, 16) - - -
ResBlock (16, 16) - - -
Conv2d (16, 1) 3 1 1
Sigmoid - - - -
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