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Abstract

Relative camera pose estimation is a fundamental problem in Computer Vision. While it
has been widely studied over the decades by classical approaches and more recently
by learning-based methods, it still remains a challenging problem. Particularly, wide-
baseline camera transformation in indoor scenarios results in frames with small overlap
and few correspondences.

In this Master’s Thesis, we present LRCE, an end-to-end learnable differentiable ap-
proach for solving pairwise relative camera pose estimation for RGB-D frames. The
key idea is to learn confidence scores for the correspondences in a self-supervised
manner using an end-to-end loss based on the distance between the predicted and the
ground truth poses. Additionally, our end-to-end differentiable pipeline enables refining
correspondence prediction from the signal provided by the final alignment.

Finally, we evaluate our method on the ScanNet dataset by analyzing the performance
of correspondence matching and pose estimation. We demonstrate that our approach is
able to improve the pose alignment by weighting the correspondences with the predicted
scores. We also show that the signal from the pose alignment improves the performance
of the correspondence matching.
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1. Introduction

Camera pose estimation is a core problem in many computer vision applications such
as 3D reconstruction, Structure from Motion (SfM) or Simultaneous Localization and
Mapping (SLAM). At its core definition, the problem consists in finding the camera
location from a frame with respect to an arbitrary coordinate system such as another
camera from a different frame or a global coordinate system.

Figure 1.1.: Diagram of the camera pose estimation problem: The goal is finding the
transformation between the camera Ocamera coordinate system to another
one, in this example, the world coordinate system Oworld. The transformation
has two components: rotation R and translation t.

Because relative pose estimation is such a core problem in Computer Vision, it has
been studied for many decades. For calibrated cameras, there exist multiple classical
approaches which solve it by constructing the Essential matrix. The Essential matrix
relates correspondences between a pair of images through epipolar geometry. Likewise,
it’s possible to solve the problem for uncalibrated cameras using the Fundamental
matrix.

Traditionally, pose estimation is approached in multiple steps [1]: i) feature detection,
ii) feature description, iii) feature matching, and iv) pose optimization. The first step,
feature detection, consists in selecting points of interest from both images, such as
corners, and avoid selecting points on texture-less areas such as walls. Feature descrip-
tors are then computed for each point using information from its neighborhood. Then,
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1. Introduction

the points from the first image are matched with points from the second image using
their descriptors. A common approach for that is matching points which are nearest
neighbors in the descriptor space. Finally, the matches are used as constraints for the
optimization problem of finding a rigid transformation which minimizes the distance
between the matches. Additionally, it might be necessary to add a post-processing step
to remove outliers, that is, correspondences which are not correct.

In recent years, Deep Learning has been used to revisit many Computer Vision problems.
The rapid evolution of hardware allows solving problems with approaches which were
computationally unfeasible in the past. This is not only due to the increase in hardware’s
performance but also to the growth of available data. Moreover, every year sensors used
to generate datasets are more accurate which is a crucial requirement for Deep Learning
approaches.

Classic feature detectors and descriptors such as SIFT [2] and ORB [3] rely on hand-
crafted detectors and descriptors which fail in wide-baseline scenarios, texture-less
areas and other challenging situations. Incorrect matches have a fatal effect on pose
optimization, therefore, many methods rely on post-processing the matches to filter the
outliers. To do so, matches are filtered by the distance of the keypoints in feature space,
or by iterative approaches such as RANSAC [4]. However, these methods are slow and
perform poorly when there are too many outliers.

Figure 1.2.: Visualization of correspondences produced by SIFT. Correspondences are
pairs of coordinates from each image which, ideally, back-project to the same
point in space. The red arrows illustrate an example of an outlier, a wrong
match, which have a strong impact during pose estimation.

Learning-based approaches tackle this problem by directly regressing the relative pose
from a pair of frames, or by learning one (or more) steps from the classic pipeline: feature
detection, feature description, feature matching, outlier removal and pose estimation.
Nonetheless, methods that approach these steps do so in a decoupled manner. This
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results in the steps not being able to provide feedback to each other, and therefore, not
being able to learn from the final pose alignment.

To this end, we propose LRCE, a deep learning architecture to estimate the relative
camera transformation between a pair of RGB-D frames. The key idea to our method
is an end-to-end differentiable trainable pipeline which allows all components to be
informed by the final alignment of the predicted pose.

A differentiable weighted Procrustes aligner allows us to obtain gradients from the final
pose objective which is used to learn to weight the correspondences in a self-supervised
manner. Therefore, our method solves the pose optimization problem in a robust
manner.

Our model is formed by the following three components: i) Correspondence and
Visibility Prediction, ii) Correspondence Weighting, and iii) Differentiable Weighted
Procrustes.

Given a pair of RGB-D images, the model predicts the relative camera transformation
between the source frame and the target frame. First, the Correspondence Prediction
component computes 2D sparse matches and visibility scores between source and target
only using RGB channels. The visibility score allows the model to filter out occluded
points from the source frame which don’t have a match in the target frame. Afterwards,
the network uses the 2D correspondences to retrieve 3D matches using the depth frames
and predicts a confidence score for each weight. Finally, the 3D matches and confidence
scores are fed into a differentiable weighted Procrustes which optimizes the relative
pose.

We balance the use of supervised and self-supervised training for our model. First,
Correspondence Prediction and Visibility prediction are trained in a supervised fashion
using ground truth correspondences and visibility labels, which are computed from the
dataset’s frames and camera poses. Then, we train relative pose estimation with the
weights in an end-to-end self-supervised manner.This end-to-end loss also informs the
Correspondence and Visibility Prediction module improving its performance.

We evaluate our method in ScanNet [5] dataset. We show how feature matching results
improve when using the proposed weighting scheme. Similarly, we evaluate pose
estimation by comparing against the baselines and showing how the performance of
our method improves when using the self-supervised confidence scores as weights.

In summary, the main contributions of this thesis are the following:

• a correspondence and visibility prediction module for pairs of RGB frames

• a self-supervised module that learns correspondence weighting enabling robust
outlier rejection

• an end-to-end differentiable pipeline which enables all the modules to be optimized
with final pose objective
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1. Introduction

The source code is available1.

The rest of the thesis is structured as follows:

Chapter 2 reviews existing approaches which tackle feature detection, feature matching,
outlier �ltering and the problem of pose estimation.

Chapter 3 presents the proposed method, LRCE, a CNN architecture with three main
components: Correspondence and Visibility prediction, Correspondence weighting and
a Differentiable Weighted Procrustes aligner.

Chapter 4 starts by reviewing the implementation and training details. Then it evalu-
ates and discusses the results for the tasks of matching, correspondence weighting and
pose optimization. Finally, ablation studies show the performance of the method with
different con�gurations.

Chapter 5 discusses the limitations of our approach and presents possible improve-
ments and further work.

Chapter 6 concludes this thesis by restating the key ideas and main contributions.

1https://github.com/marcbenedi/LRCE
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2. Related Work

In this chapter, we review different research efforts for the tasks related to the pose
estimation problem We start in Section 2.1 discussing classic feature matching and
continue in Section 2.2 with learning-based feature matching. In Section 2.3, we examine
the literature for outlier �ltering which enables a more robust optimization of the pose,
and we end in Section 2.4 discussing methods which tackle the pose estimation problem.

2.1. Classic Feature Matching

Feature matching is classically approached as a multi-step pipeline: i) keypoint detection,
ii) feature description, iii) feature matching, and iv) outlier removal.

Classical methods solve these steps using hand-crafted geometry descriptors. Harris
Corner Detection [6] is a corner detection algorithm based on the difference in intensity
in all directions for a neighbourhood. However, corners look different in different images.
To tackle this issue, SIFT [2] introduces a scale-invariant corner detector which uses
nearest-neighbour search to create matches. Other hand-crafter methods are SURF [7],
FAST [8] and ORB [3] which are widely used in many tasks because of their good
performance.

In spite of their popularity, hand-crafted methods strive with large viewpoint/illumina-
tion changes, texture-less areas and repetitive patterns.

2.2. Learning-based Feature Matching

In the last decade, the increasing availability of reliable sensors enabled the construction
of datasets such as [5, 9]. These datasets allowed Deep Learning to revisit feature
matching as a learning-based problem.

LIFT [10] is one of the �rst successful learning-based feature description methods. They
solve detection, orientation estimation, and feature description in a uni�ed manner using
an end-to-end approach. Other approaches construct a 4D cost volume, which stores the
cost of associating a pixel with its corresponding pixels. However, 4D cost volumes are
computationally expensive to construct and process due to their high dimensionality
caused by storing the cost of associating all keypoints on both frames. [11, 12, 13] explore
patterns in the cost volume to �nd matches using sparse convolutions. PWC-Net [14]
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2. Related Work

�nds matches across images by predicting optical �ow. That is, they regress a 2D offset
vectors per pixel.

Some other methods like SuperGlue [15] learn to match two sets of local features
provided by an independent component using a Graph Neural Network and the attention
mechanism. This combination allows them to leverage the relationship of keypoints in
the same image and to the other image. Then, they construct a score matrix by computing
the inner product of the features and �nd the matches as a partial assignment problem
on the score matrix using the Sinkhorn algorithm [16].

Other works based on SuperGlue such as Roessle [17] take advantage of the situations
where this problem arises, such as in video sequences, and use multiple-view to further
improve the performance. In addition, they add an end-to-end loss which allows the
network to learn from the �nal alignment.

However, these methods depend on an independent detector component which limits
their performance to the selected kepoints. Additionally, it means that feature detection
cannot bene�t from an end-to-end loss. In contrast, our proposed method is end-to-end
differentiable and all components bene�t from the �nal pose alignment.

A similar method is LoFTR [18], which presents a detector-free matching approach that
performs semi-dense pixel matching in a coarse-to-�ne manner also using attention.
However, their method does not get any signal from the �nal pose alignment.

2.3. Outlier Filtering

Despite the improvements in the performance of feature detection and matching, out-
liers caused by erroneous correspondences have a strong negative impact during pose
optimization. In addition, sensor data, particularly depth frames, are prone to contain
noise due to sensor accuracy, working range or environment conditions such as mirrors
or glass.

A common approach is performing outlier removal after feature matching in an attempt
to remove the outliers from the problem constraints. A widely used algorithm for such
a task is Random Sample Consensus (RANSAC) [4], which aims to iteratively �nd
solutions for randomly selected subsets of correspondences, estimate their alignment,
and then select the solution with minimum error. However, RANSAC is slow because of
its iterative sampling approach and suffers when the signal-to-noise ratio decreases.

Methods which learn the matching function, such as SuperGlue, �lter outliers by
matching them to a "dustbin". This dustbin is added by extending the score matrix with
a row and a column.

Several methods leverage learning a weighting scheme for the correspondences. Deep
Global Registration [19] tackles the problem of point cloud registration using a CNN
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2.4. Camera Pose Estimation

architecture. Their method directly �nds correspondences in the 3D data whereas we
�nd the matches in the 2D image domain which then we back-project to 3D using the
depth data. They follow a similar approach to perform robust optimization by predicting
con�dence weights for each match. In addition, both approaches train correspondence
weighting in a self-supervised manner using the �nal pose alignment as a loss function.

Other approaches learn to �lter outliers as a binary classi�cation problem. Yi, Trulls,
Ono, et al. [10] present an approach to classify correspondences. Their method is
supervised by exploiting the epipolar geometry. This allows them not having to label
the correspondences explicitly.

2.4. Camera Pose Estimation

Pose estimation is the last step in the pose optimization pipeline. It is a very well-studied
method in Computer Vision because it is a key component in many applications such as
3D reconstruction, SfM or SLAM. The 8-point algorithm [20] and its derivative works
can be used to recover the Essential matrix E which relates correspondences between
two images. From the Essential matrix, it is possible to recover 5 degrees of freedom
from the relative transformation between the two cameras, since it is not possible to
recover the scale of the translation component. Similarly, if the camera parameters are
unknown, we can recover the Fundamental matrix F. For a full in-depth explanation,
we refer the reader to [21].

The methods mentioned above only use 2D data from images and therefore have
limitations such as scale ambiguity. Another �eld takes advantage of 3D information
and approaches the pose estimation problem as a point cloud registration, that is, �nding
the transformation between two sets of points. Iterative Closest Points (ICP) [22], tackles
the problem with an iterative approach with two steps: i) estimate correspondences
between the two sets of points, ii) �nd a rigid transformation which minimizes an
objective function. However, ICP only converges to a good alignment if the starting
positions are close enough.

Kendall, Grimes, and Cipolla [23] introduce a method for absolute pose regression.
Their method uses convolutional layers to extract features from RGB images and then
a fully connected layers to regress the 6 degrees of freedom of the pose. In addition,
they leverage transfer learning from a network trained for a classi�cation task. However,
although both relative pose and absolute pose problems estimate a 6-DOF transformation
they are inherently different since the former approach can generalize to unseen scenes
whereas the latter one is trained per scene [24].

Other learning-based approaches directly regress relative poses from RGB images.
Melekhov, Ylioinas, Kannala, and Rahtu [25] present a Siamese network architecture
adopting the same learning objective as [23] but for relative camera pose.
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2. Related Work

Recent end-to-end approaches integrate feature matching with pose optimization.
Roessle and Nießner [17] present an approach for feature matching using differen-
tiable pose optimization. Similar to our method, their pipeline is end-to-end trainable
and they predict con�dence scores which are trained in a self-supervised manner from
the pose objective. However, in contrast to our work, their method depends on a given
set of feature descriptors, which means that feature description and the rest of the
pipeline remain disconnected and cannot inform each other.
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3. Method

In this chapter, we introduce LRCE, our proposed network architecture for solving the
pose estimation problem. We begin with an overview of the model (Section 3.1) followed
by a detailed explanation of all its components: Correspondence and Visibility Estimation
(j ) (Section 3.2),Correspondence Weighting (w) (Section 3.3) andDifferentiable Weighted
Procrustes(Section 3.4). Finally, we describe the loss used to train our components in an
end-to-end fashion (Section 3.5). We refer the reader to Section 4.1 for implementation
and training details.

We de�ne the relative pose estimation problem formally as: given a pair of frames,
source S and target T, �nd the euclidean transformation TTS which aligns the source
frame to the target frame. The transformation TTS is de�ned as TTS(p) = Rp + t, where
p belongs to S and TTS(p) belongs to T. R is an orthogonal transformation, i. e. it has
the following properties: R 2 SO(3), R 2 R3� 3, RTR = I , det(R) = 1. These forceR to
be a rotation matrix, i. e. without re�ections. t 2 R3 is a translation vector.

Each frame has the following information associated: RGB image C 2 R H � W� 3, depth
image D 2 R H � W and the camera poseP 2 R4� 4. Additionally, we back-project the
values of D and obtain the associated point cloud B 2 R H � W� 3.

We also have known camera parameters K 2 R4� 4. Figure 3.1 shows a diagram of the
problem and all its components.

3.1. Overview

Given two frames, S and T, our method computes the relative pose between the two
cameras following these steps:

1. SelectQ := f q1, . . . ,qn jqi 2 R2g, a set of n query pixels from CS.

2. Using the Correspondence Estimationmodule ( j ), predict a set of correspondences
M := f m1, . . . ,mnjmi 2 R2g. Ideally, mi are the coordinates of qi in CT.

3. Additionally, we predict a set of visibility scores V := f v1, . . . , vnjvi 2 (0, 1)g,
where vi indicates if qi is visible in CT.

4. Next, we recover the 3D points associated with Q and M from BS and BT respec-
tively. We denote these sets of back-projected pixels asQ := f q1, . . . , qnjq i :=
BS[qi ] 2 R3g and M := f m1, . . . ,mnjm i := BT[mi ] 2 R3g.
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