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Problem

● Input is a pair of RGB-D frames

● Estimate relative camera position
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Motivation

● Iterative Closest Point (ICP) [Besl & McKay, 92]

○ Point cloud alignment
○ Two steps

■ Data association
■ Transformation estimation

○ Converges to a good alignment if starting positions are ‘close enough’
■ Problem: it doesn’t converge otherwise

● Model that provides initial alignment
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Direct Regression approaches

● PoseNet [Kendall et al, 15]

○ Use CNN encoder and FC regresor to estimate the absolute pose
○ Multiple approaches extended this idea for relative pose estimation
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RelPoseNet[Melekhov et al, 17]



Method - Overview
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Method - Correspondence and Visibility Predictor

8DeepDeform [Božič et al, 19]
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Method - Correspondence and Visibility Predictor
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DeepDeform [Božič et al, 19]



Method - Correspondence Weighting
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●    Back-projected visible query pixels 

●    Back-projected predicted matches

●    Predicted weights

●    

 

   

●

Method - Differentiable Weighted Procrustes

11Deep Global Registration [Choy et al, 20], Deep Closest Point [Wang & Solomon, 19]



Training pipeline

12ScanNet [Dai et al, 17]



Results - Correspondence Prediction

13

ORB

SIFT

Model



Results - Correspondence Prediction
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Results - Correspondence Prediction

● Distance between ground truth and predicted correspondences

15ORB[Rublee et al, 11], SIFT[Lindeberg et al, 12]



● Ground truth matches● Predicted matches

Results - Visibility Prediction
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(x) - not visible, (?) - unknown  

● Accuracy on validation dataset: 0.83 



Results - Correspondence Prediction - 7 scenes

● Distance between ground truth and predicted correspondences

17Real-time RGB-D camera relocalization[Glocker et al, 13], RelPoseNet[Melekhov et al, 17]



Relative Poses

● Our relative poses
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● Relative poses from 7-scenes dataset



● Ground truth matches

Results - Correspondence Prediction - 7 scenes

● Predicted matches
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(x) - not visible

(?) - unknown  



Results - 3D Reconstruction

● Comparison of ICP, model and ICP with predicted pose as initial guess
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Results - 3D Reconstruction

● Target frame (left)

● Source frame (right)

● Predicted correspondences
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Results - 3D Reconstruction

● Target frame (green)

● Source frame (blue)
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Model + ICPGround truth

ICP Model



Conclusions

● We proposed a method for pairwise relative pose estimation

● It outperforms ICP for 3D scene alignment

● It helps avoiding local minima for ICP (better global solution when combined)
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Future Work

● Correspondence weighting

● End to end

● Dense correspondences (for all pixels)
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Questions
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Appendix
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Dataset
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● We used ScanNet dataset

● For image id = i, pairs [(i, i + 20), (i, i + 50), (i, i + 80)] generated

Correspondence prediction

● Train

○ 380 scenes
○ 80k pairs of frames
○ 3.5M visibile matches

● Validation

○ 90 scenes
○ 20k pairs of frames
○ 800k visible matches

Visibility prediction

● Train

○ 90 scenes
○ 20k pairs of frames
○ 2M pairs of matches (800k 

visible, 1.2M occluded)
● Validation

○ 10 scenes
○ 2k pairs of frames
○ 220k matches (90k visible, 

130k occluded)

Correspondence weighting

● Train

○ 1201 scenes
○ 307k pairs of 

frames
● Validation

○ 312 scenes
○ 80k pairs of 

frames



Training Details
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Correspondence 
prediction

Visibility prediction Correspondence 
weighting*

End-to-end*

Learning rate 0.01 0.01 0.01 0.01

Momentum 0.9 0.9 0.9 0.9

Weight decay 1e-5 1e-5 1e-5 1e-5

Batch size 32 32 32 32

Iterations 60k 60k - -

Learning rate 
decay by 0.1

30k 53k - -

Training time 21h 14h - -
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