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Abstract

We present an end-to-end learnable, differentiable
method for pairwise relative pose registration of RGB-
D frames. Our method is robust to big camera motions
thanks to a self-supervised weighting of the predicted cor-
respondences between the frames. Given a pair of frames,
our method estimates matches of points and their visibil-
ity score. A self-supervised model predicts a confidence
weight for visible matches. Finally, visible matches and
their weight are fed into a differentiable weighted Pro-
crustes aligner which estimates the rigid transformation be-
tween the input frames.

1. Introduction
Relative camera pose estimation is a core component in

many applications in computer vision, robotics and com-
puter graphics. The range of applications varies from 3D
rigid reconstruction, structure from motion (SfM), camera
relocalization and many others. The problem consists in
estimating the rigid transformation that aligns two inputs:
source and target.

Classic approaches follow a similar pipeline [17]: (1)
feature extraction; (2) feature matching among frames; (3)
estimate a rigid transformation T ∈ SE(3) that aligns the
correspondences.

Classic methods require considerable overlap between
the RGB frames and fail when the camera motion is big.
We developed a method that is robust to such cases by es-
timating a weight for each match. These weights are used
to downvote poor correspondences such that their impact
during pose estimation is minimized.

The proposed method has three components: (1) We
generate matches between the two RGB frames and predict
a visibility score for each one of them; then, (2) a dCNN
predicts a confidence weight for each match; and finally,
(3) a differentiable Weighted Procrustes aligner regresses
the rigid transformation between the two cameras.

The rest of the paper is organized as follows: Sec.2
presents the related work. Sec. 3 presents the rigid recon-

struction problem and describes the proposed method. Sec.
4 presents the experiments and results. Finally, Sec. 5 con-
cludes the paper.

2. Related Work
2.1. Feature-based correspondence matching

As previously mentioned, the second step in many re-
construction pipelines is matching the extracted features
from the input frames. Traditionally, these methods were
hand-crafted descriptors. For RGB images, descriptors
and matching mechanisms such as SIFT[11], SURF[1] and
ORB[13] have been historically used. However, these de-
scriptors tend to perform poorly in large viewpoint changes
(where image overlap is small), textureless objects or repet-
itive patterns.

Recent state-of-the-art methods leverage the use of
CNNs which learn how to extract features from images.
outperform hand-crafted descriptors

Recent state-of-the-art methods leverage the use of
CNNs that learn how to extract and match image features.
These methods have shown to be more resilient to situations
where hand-crafted methods fail. Fischer and Dosovitskiy
[7] proposed a method using a CNN that outperforms sift
on the descriptor matching task.

Božič et al. [4] presented a method for non-rigid recon-
struction. In their work, they propose a dCNN architecture
to predict a likelihood heatmap around the correspondence
point. We based our Correspondence and Visibility predic-
tion component (Sec. 3) in their work.

2.2. Pose optimization

Pose optimization consists on finding a transformation
that aligns two objects. Iterative Closest Points (ICP) [2] is
an iterative algorithm that estimates a rigid transformation
which minimizes the difference between two point clouds.
A single iteration performs two steps: (1) Find correspon-
dences; and (2) Estimate a transformation such that pair-
wise distance between correspondences is minimized.

Kendall et al. [10] introduced a method for absolute pose
regression using CNNs to extract features from RGB im-
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Figure 1. Pipeline of our method. Given a pair of RGB-D images, I1, D1 I2, D2, we estimate the relative pose between these frames
as R̂ ∈ SO(3) and t̂ ∈ R3. First, I1, I2 are fed into the Correspondence and visibility prediction component, the visible predicted
correspondences are weighted in the Correspondence Weighting component. Finally, they are back-projected into 3D and feed into the
Weighted Procrustes aligner which estimates the relative pose.

ages and regress the 6-DOF pose using fully connected lay-
ers. They leveraged transfer learning from a network trained
for classification. Inspired by it, other methods approached
relative pose regression.

Melekhov et al. [12] presented a model for camera relo-
calisation regressing relative poses between the sensor’s in-
put and a database of known locations. They built a Siamese
network encoder with shared weights and fully connected
layers as the final regressor. Unlike absolute pose, relative
pose estimation can generalize to unseen scenes [14]. RCP-
Net is another example of a method directly estimating the
relative pose using a CNN encoder and FC layers as a re-
gressor [16].

2.3. Outlier filtering/Robust optimization

Bad correspondences are common when produced with
feature matching methods. This outliers have a strong neg-
ative impact during the alignment estimation phase. It is
necessary to filter them out before that. Fischler and Bolles
[8] proposed a general parameter estimator to cope with out-
liers in the data. Their method, RANSAC, aims at estimat-
ing a solution that fits as much as possible the input data by
using the minimum number of correspondences.

Other methods use deep learning techniques to filter out-
liers. Choy et al. [5] presented a CNN for correspondence
confidence prediction. They feed the predicted confidences
to a Weighted Procrustes aligner to estimate relative poses
between 3D scans. Božič et al. [3] also used a CNN-based
architecture to learn correspondence weighting in a self-
supervised manner.

3. Method
In this section, we will outline our method for regressing

relative poses from image pairs. We define the target im-
age as I1 and the source image as I2. Likewise, we define
the target and source depth maps as D1 and D2. Finally,
we aim at estimating the relative pose that aligns source to
target as a 3D rotation R ∈ SO(3), (R ∈ R3×3, RTR =
I, det(R) = 1), and a translation vector t ∈ R3.
I1, I2 are of size 224×224 with 3 color channels. D1, D2

have the same dimensions but only a single channel contain-
ing the depth information. Thus, we define H = 224 and
W = 224.

3.1. Overview

Given two RGB frames I1, I2 and their respective depth
maps D1, D2, our method performs the following steps:

1. Select Q := {q1, ..., qn} a set of n query pixels from
I1.

2. Using the correspondence and visibility prediction
component (ϕ), predict a set M := {m1, ...,mn} of
pixels from I2 such that qi is the predicted match of
mi. Additionally, we predict a visibility score for each
match V := {v1, ..., vn}, vi ∈ [0, 1].

3. A match mi is considered occluded in I2 if vi < 0.5
and visible otherwise. We mask out the non-visible
matches from Q and M obtaining Q′,M ′ of length m.

4. The correspondence weighting module (Φ) predicts a
confidence score for all pairs (q′i,m

′
i), q

′
i ∈ Q′,m′i ∈
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M ′. We name this set of weights as W :=
{w1, ..., wm}.

5. Using the camera parameters, Q′ and M ′ are back-
projected from pixels to 3D points. We define Y and
X as the set of back-projected pixels for Q′ and M ′

respectively.

6. X,Y and W are fed into the weighted Procrustes
aligner (Θ) which outputs the estimated rotation R̂ and
translation t̂.

We want R, R̂ and t, t̂ to be as close as possible.

3.2. Correspondence and visibility prediction (ϕ)

The goal of this component is to predict the coordinates
of a pixel m in I2 that corresponds to a pixel q from image
I1 and a visibility score v. We based the architecture of this
component on the work of Božič et al. [4].

To feed q to the network, we generate a heatmap Hq of
dimensions H ×W . Hq[q] = 1.0 and the rest of the values
decay to zero following a Gaussian KernelG(q;σ = 7) cen-
tered around q with standard deviation seven pixels. Simi-
larly, at train time, we generate the heatmapHgt around the
ground-truth match m.

ϕ : RH×W×3 × RH×W×3 × RW×W → RH×W × R,

ϕ(I1, I2,Hq)→ (Ĥ, v̂)
(1)

We want the network to predict the likelihood of the pixel
coordinates of q in I2. For this, we will apply a sigmoid
activation function σsg to the predicted heatmap Ĥ in order
to map all values between zero and one. Additionally, we
apply the softmax activation function σsg so that it creates
a complete probability distribution. However, some query
pixels may not be visible in I2. This could be due the match
m being outside the image frame or it being occluded. For
this reason, we add a head to the network which predicts the
visibility score v. We apply a sigmoig activation function
σsg to v to map it to the range [0, 1].

During optimization, we give more importance to the
pixels closer to m. For that, we define a pixel weighting
function as: wH(p) = 1 + 10G(m;σ = 7)(p).

We used the following loss for correspondence and visi-
bility prediction:

LH =
∑
i

Φbce(wH(σsg(H)−Hgt))+

λnll
∑
i

Φnll(wH(σsm(H)−Hgt))
(2)

Where Φbce denotes the binary cross entropy loss and
Φnlll the negative log-likelihood. We use the same λnll =
10 as the original authors [4].

Finally, the output heatmap Ĥ is computed as the
Hadamard product Ĥ = σsg(H) ⊗ σsm(H). For visibil-
ity prediction, we apply sg to the output of the bottleneck.
We then use binary cross entropy to compute the loss:

LV =
∑
i

Φbce (v̂ − v)

3.3. Correspondence weighting (Φ)

Following a similar approach as Neural Non-Rigid
Tracking [3], we add correspondence weighting to the pre-
dicted matches to enable a more robust optimization.

Given a set of visible (vi > 0.5) query points Q′ and
their predicted matches M ′, the correspondence weighting
component outputs a confidence score W := {w1, ..., wm}
for each matched pair.

Φ : RH×W×3 × RH×W×3 × RH×W × RH×W → R
Φ(I1, I2, Hq, Hp)→ w

(3)

As input, this component takes the two RGB frames, the
query heatmap and the predicted heatmap. Notice that only
visible points will go through this.

This part of the pipeline is self-supervised, i.e. we do
not use ground-truth weights for training. The model infers
the confidence of the visible correspondences thanks to the
end-to-end training.

However, we were unable to get any improvement from
this component. During training, the model was unable to
learn any useful weighting for the correspondences, predict-
ing very similar values for all of them. See Section 5 for
more details.

3.4. Weighted Procrustes aligner (Θ)

Given a set of query pixels Q′, visible predicted matches
M ′ and their confidence weights W , we back-project
Q′,M ′ to 3D points using the known camera intrinsics ma-
trix. We define these sets of back-projected 3D points as
X,Y respectively. We aim at finding the rotation matrix
R ∈ SO(3) and translation vector t ∈ R3 that minimize the
following function:

L(R, t,W,X, Y ) =
∑
i

wi(yi − (Rxi + t))2 (4)

This problem is know as the Weighted Procrustes analy-
sis.

As show by Choy et al. [5], the closed solution forR and
t are

R̂ = USV T

t̂ = (Y − R̂X)diag(W̃ )1
(5)
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Figure 2. Architecture diagram of the Correspondence and visualization prediction component (ϕ). The component takes two RGB frames
and a query heatmap Hq of dimensions H ×W as input. The model predicts a heatmap Ĥ encoding the likelihood of the coordinates of
the matching point. We based this component’s architecture on Božič et al. [4].

Figure 3. Correspondence weighting component architecture. For
the visible matches estimated by the Correspondence and visual-
ization prediction component, this model will predict a vector of
weights W such that inaccurate matches will have a smaller value
than accurate matches.

where W̃ are the normalized weights, UΣV T =

SV D(Σxy), Σxy = Y KWKXT , K = I −
√
W̃

√
W̃

T

,
and S = diag(1, ..., 1, det(U), det(V )).

Finally, we compute the following loss function to mea-
sure the error between the estimated parameters and the
ground-truths:

Lalign = ||RT
pRgt − I||+ ||tp − tgt|| (6)

The two terms measure the distance on SE(3), but un-
like Wang [15], we chose L1 to offer more robustness
against outliers.

We combine the loss of all the components to enable end-

to-end training: L = LH + λvLv + λalignLalign.
In all experiments we use the empirically determined

weights λv = 1 and λalign = 1.

4. Experiments
For these experiments we used ScanNet [6] which

provides us with sequences of RGB-D frames with camera
poses and camera parameters. We first trained the corre-
spondence prediction, followed by visibility prediction,
then correspondence weighting, and finally end-to-end
training. However, these two steps were unable to learn
anything.

Correspondence prediction. We generated a train split
with 380 scenes, 80k pairs of frames and 3.5M of visible
correspondences. The validation split included 90 scenes,
20k pairs of frames with 800k visible correspondences. Us-
ing this dataset, we trained the correspondence prediction
component with an initial learning rate of 0.01. Every 30k
iterations we decrease it by a factor of 0.1. The model’s
loss converged after 60k iterations.

Visibility prediction. While training these part, all
parts except the visibility block were frozen. The train split
contained 90 scenes, 20k pairs of frames with 2M pairs
of correspondences (800k visible, 1.2M occluded). The
validation split contained 10 scenes with 2k pairs and 220k
correspondences (90k visible, 130k occluded). We used the
same parameters as the previous section.

Correspondence weighting. While training this part,
the component correspondence and visibility prediction (ϕ)
was frozen. The train split contained 1201 scenes with 307k
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pairs of frames. The validation split contained 312 scenes
with 80k pairs of correspondences. For this part, a batch
contained only a single pair with a sparse set of query pix-
els. In this manner, the batch can be back-projected to 3D
and feed into the weighted Procrustes aligner. We used the
same parameters as in the previous section. As mentioned,
this component was unable to learn proper weighting for the
correspondences.

End-to-end training. We used the same splits and
hyper-parameters as in the previous part. Again, the net-
work was unable to improve the results.

4.1. Correspondence accuracy

In this section, we compere the correspondence predic-
tion of our network against ORB [13] and SIFT [11]. In
figure 5, we can see the distance (in pixels) between the
ground-truth match and the predicted match. We can see
how the precision of the correspondences predicted by our
network is similar to the ones obtained by using ORB and
SIFT.

We also tested our network with the 7-Scenes dataset
[9]. We used the train and validation split provided by Rel-
PoseNet [12]. These splits provide relative transformations
much bigger than the ones we used from ScanNet, some-
times including frames without overlap. Figure 6 shows the
distance (in pixels) between the ground-truth match and the
predicted match. We can see how our network is able to pre-
dict matches with similar precision as when using ScanNet.
This demonstrates that our model is able to generalize to
unseen datasets. However, it can be seen that for big angles
the error increases. This is due to the fact that the pairs in
7-Scenes dataset combine big translation with big rotation.

4.2. Visibility prediction

Our model achieves an accuracy of 0.83 on the validation
dataset.

4.3. Comparison with ICP

In this section we compare our model against ICP us-
ing point-to-point (pt2pt), point-to-plane (pt2pl), and both
(ICP). Figure 9 shows the Root Mean Squared Error
(RMSE) per rotation and translation threshold. We can see
how our method is able to achieve better results than ICP.
We can conclude that our model is able to estimate a ini-
tial relative transformation which is closer to the one pro-
duced by ICP. Therefore, when ICP is executed using the
network’s prediction as initial estimate, it can avoid local
minimum and get closer to the optimal solution.

Figure 10 shows the output of the back-projected frames
aligned with the different methods. Notice that the over-
lap among the frames is small. We can see how the align-
ment of ICP fails to reconstruct the scene. Similarly, the

network reconstruction only aligns the sparse predicted cor-
respondences, however, when combining both, the recon-
structed scene is very similar to the real one. Again, this
confirms that the predicted pose is close to the global min-
imum, which helps ICP avoiding getting stuck in a local
minimum.

5. Conclusions and Future Work
We presented an end-to-end learnable, differentiable

method for pairwise relative pose registration. It is able out-
performs ICP for 3D registration and it predicts a pose that
can guide ICP to obtain a better solution. Our model is
able to predict accurate correspondences on unseen scenar-
ios proving that it’s able to generalize.

However, for large rotations and translation, the accu-
racy of the predicted correspondences decreases consider-
ably. We were not able to take advantage of the end-to-end
training due to the correspondence weighting component
not being able to predict meaningful scores. We believe that
end-to-end training is crucial to improve the performance of
this method. Currently, a poor match and wrongly classify-
ing an occluded point as visible have a strong impact during
the pose estimation. We believe end-to-end training will be
able to improve the performance of the correspondence and
visibility prediction in addition of decreasing the influence
of possible outliers.

Finally, working with dense correspondences can pro-
vide the Weighted Procrustes Aligner component with more
data. However, it is critical to accurately down-weighting
wrong correspondences.
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Figure 9. Comparison of reconstruction using IPC and the model. For ICP, we used point-to-point constraints (pt2pt), point-to-plane
constraints (pt2pl) and both (ICP). It can be seen how the network performs better than all ICP variants. In general, the combination
Model+ICP performs better than Model. This is because the predicted pose is closer to the global minimum and ICP can estimate a better
pose. However, if the predicted pose is far from the global minimum, ICP will estimate a pose further away leading to a higher error.

Figure 10. Example of 3D reconstruction. The frames used are from ScanNet [6] scene 0712 ids 2310 and 2360. For better visualization,
we show in green the target frame and in blue the source frame. Notice in the ground-truth alignment that the overlap between the frames
is small. We can see how ICP fails at reconstructing the scene and that the network is able to align the correspondences. Finally, when
using the network’s prediction to guide ICP, the obtained solution is much closer to the global minimum.
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